Adaptability to Submerged Culture and Amtno Acid Contents of Certain Fleshy Fungi Common in Finland

Total Page:16

File Type:pdf, Size:1020Kb

Adaptability to Submerged Culture and Amtno Acid Contents of Certain Fleshy Fungi Common in Finland Adaptability to submerged culture and amtno acid contents of certain fleshy fungi common in Finland Mar j a L i is a H a t t u l a and H . G. G y ll e n b e r g Department of Microbiology, University of Helsinki, Finland The literature on the possibilities of sub­ must be considered when the suitability of merged culture of macrofungi is already fungi for submerged production is evaluated. voluminous. However, the interest has merely The present work concerns a collection of been restricted to the traditionally most va­ fungi common in Finland which have been lued fungi, particularly members of the gene­ investigated according to the criteria descri­ ra Agaricus and M orchella (HuMFELD, 1948, bed above. 1952, HuMFELD & SuGIHARA, 1949, 1952, Su­ GIHARA & HuMFELD, 1954, SzuEcs 1956, LITCHFIELD, 1964, 1967 a, b, LITCHFIELD & al., MATERIAL 1963) . The information obtainable from stu­ dies on these organisms is not especially en­ The material consisted of 33 species of fun­ couraging because the rate of biomass pro­ gi, 29 of which were obtained from the duction seems to be too low to compete fa­ Department of Silviculture, University of ,·ourably with other alternatives of single cell Helsinki, through the courtesy of Professor P. protein production (LITCHFIELD, 1967 a, b). Mikola and Mr. 0 . Laiho. Four species were On the other hand, the traditional use of fun­ isolated by the present authors by taking a gi as human food all over the world is a sterile piece of the fruiting body at the point significant reason for continued research on where the cap and the stem are joined and the submerged production o.f fungal mycel­ by transferring it on a slant of suitable agar. ium. If the fungal mycelium is comparable The species considered a!'e listed below fol­ with other single-cell protein preparations as lowing the nomenclature of M. MosER to its protein content and amino acid com­ (1967). (For the species indicated by an position, it seems to gain preference over asterisk fruiting bodies were collected for other alternatives due man's traditional know­ comparison whereas the species with the ledge and experience concerning the toxicity + label were isolated in pure culture by characteristics and other conditions influen­ the pl'esen t authors. ) cing the edibility of fungi. A particular aspect requires attention in this connection. Clavaria ligula The traditional «mushroom« used a.s food Cantharellus · cibarius * concerns the fruiting bodies whereas the sub­ Suillus grevillei ( elegans) merged cultivation produces preparations of S. luteus * mycelium. Therefore it seems that besides the S. bovinus * adaptability to submerged growth the simi­ S. variegatus * larity in composition of the mycelial pre­ Boletus edulis * + paration to the corresponding fruiting bodies L eccinum testaceo-scabrum * + 39 L . sp. («Boletus versipellis«) how rapidly the fungi used the sugar in the L. scabrum * medium. The first screening experiment to Paxillus incolutus * omit the most slowly growing species was P. atrotomentosus made by growing the mycelia in the three Hygrophoropsis aurantiaca («Cantharellus following media: a. «) a ) 5 % malt extract, Tricholomopsis rutilans (Tricholoma r.) b) Modess.' medium (MoDEss 1941) , Tricholoma flavobrunneum c) Reusser's medium (REusSER & al., 1958) T. imbricatum the composition of which is as follows: Lyophyllum loricatum Armillariella mellea (Armillaria m.) * Glucose 40 g, Ammonium tartrate 8 g, KH2P04 Collybia dryophila * 0.5 g, MgSo ·7 H 0 0.,5 g, CaC1 50 mg, FeS04 ·7 C. butyracea 4 2 2 H 2 0 2 mg, MnS03 • H 20 2 mg, Pyridoxine 1 mg, A1icromphale perforans ( M arasmius p.) p-Aminobenzoic acid 1 mg, Thiamine 0.5 mg, Marasmius androsaceus Distilled water 1000 ml. The glucose was sterilized Macrolepiota procera (Lepiota p.) separately and the vitamins were added in separate Agaricus arvensis * + solution which was sterilized by filtration. All three Cystoderma amianthinum media were bottled in 250 ml ·Erlenmeyer-flasks, Coprinus comatus * + 80. m1 in each, and they were sterilized at ll6°C Hypholoma capnoides for 20 minutes. Kuehneromyces mutabilis (Pholiota m.) The inoculation was made by transferring C ortinarius hemitric h us two agar slants of every species into 80 ml Lactarius rcpraesentaneus ·* 5 % malt extract. The flasks were incubated L. necator* 10 days at room temperature as stationary L. deliciosus aggr. * cultures. The grown mycelium was washed L. rufus* with sterile distilled water and was then broken by use of a sterile Ultra-Turrax­ The pure cultures were maintained on Modess' machine. The homogenized mycelium was agar the composition of which is the following suspended into 80 ml of sterile water and 10 (MonEss, 1941): KH2 P04 0.5 g, MgS04 ·7 H 2 0 ml of this suspension was used to inoculate 0,5 g, NH4 Cl 0,5 g, Malt extract 5 g, Glucose 5 g, each flask. Because of the different amount of , FeCl3 1 % sol. 0.5 ml, Agar. 15 g, Distilled water growth of the test organisms the suspensions 1000 ml. The medium was sterilized at 116 o C for employed as inocula were made visually as 20 minutes. similar in density as possible. Every organism The mycelia were inoculated on new agar slants and medium was tested in duplicate. The once a month and the tubes were kept four weeks flasks were incubated for two weeks in a at room temperature (22-24°C) after which they rotary shaker (200 rpm) at 28 °C. After this were transferred to refrigerator temperature. For period the growth was scored visually. Table sixteen of the test organisms (indicated by in the 1 shows the results of the experiment. above list) fruiting bodies were collected. These On the basis of the results of the experi­ were cleaned of dust and sand by scraping and no ment indicated in Table 1, the following water was used for cleaning. The fruiting bodies species were omitted from further study: were cut into small pieces and dried at 40°C until Paxillus involutus, P. atrotomentosus, Tricho­ they were easy to grind to fine powder. The powder loma flavobrunneum, Tricholomopsis ru­ was kept in a closed wessel in tfue refrigerator. tilans, Lactarius repraesentaneus, L. deli­ ciosus, Mar.asmius perforans, M . androsaceus, Cystoderma amianthinum, Boletus edulis and RESULTS Boletus «versipellis«. An experiment concerning the sugar con­ Adaptability to submerge d culture sumption ·was made with the remaining species in order to evaluate the utilization of The adaptability to submerged culture was carbon and the ylield of mycelium per quan­ investigated by some experiments where the tity of sugar used. Reusser's medium, which mycelia were grown on different media. The contains glucose, and Modess' medium, which primary criterion in these experiments was contains maltose in addition to glucose, were 40 Table I. Submerged growth of fungi in different Table 2. The efficiency of mycelium production, media. + + + growth excellent, + + good gram of mycelium/ I 00 grams of mgar. growth, + weak grofth, - no growth (the amount mycelium equal to the inocolum). Mushroom Reusser's Modess' medium medium Cantharellus cibarius 54.6 46.7 Suillus grevillei 42.7 42.2 "'8 ..;: 8 ~ ::l 1;l ::l Suillus luteus 12.9 24.3 Species V>·~ "8~ ;:l"d Suillus bovinus 53.3 22.6 ~8 ..::"' 8"' Suillus variegatus 42.4 16.9 Clavaria ligula ++ +++ +++ Leccinum testaceo-scabrum 36.4 36.2 Cantharellus cibarius +++ +++ +++ Leccinum scabrum 1.5 3.7 Suillus grevillei ++ ++ ++ Hygrophoropsis aurantiaca 26.8 33.5 Suillus luteus ++ + ++ Tricholoma imbricatum 1.0 5.4 Suillus bovinus +++ ++ +++ Lyophyllum loricatum 48.7 36.7 Suillus variegatus + + + A rmillariella melle a 43.8 32.4 Boletus edulis + + Collybia dryophila 8.8 24.5 Leccinum testaceo-scabrumt- + + +++ +++ Collybia butyracea 1.3 8.2 «Boletus versipellis« ++ Macrolepiota procera 12.1 Leccinum scabrum ++ ++ Agaricus arvensis 1.8 6.9 Paxillus involutus + + + Coprinus comatus 0.8 2.6 Paxillus atrotomentosus Hypholoma capnoides 3.9 4.8 Hygrophoropsis Kuehneromyces mutabilis 6.0 28.0 aurantiaca + + + + Cortinarius hemitrichus 57.4 50.2 Tricholomopsis rutilans -+ ++ Lactarius necator 4.5 13.4 Tricholoma Lactarius rufus 0.7 2.5 flavobrunneum + Clavaria ligula 1.0 1.9 Tricholoma imbricatum ++ Lyophyllum loricatum + + + the suspension was inoculated into 80 ml of Armillariella mellea +++ +++ +++ the medium in a 250 ml Erlenmeyer flask. Collybia drJ•ophila + + + +++ The flasks were incubated in a rotary shaker Collybia butyracea + + ++ ++ (200 rpm) at 28°C. Incubation was con­ Micromphale perforans + + + tinued until a considerable amount of rapidly Marasmius androsaceus + + + growing mycelium had developed. During the M acrolepiota pro cera + + ++ ++ incubation the volume of the medium was Agaricus arvensis + + + controlled by adding distilled water to com­ Cystoderma amianthinum + + pensate for evaporation losses. The mycelium Coprinus comatus + + + was separated by Buchner-filtration, and was Hypholoma capnoides + + ++ + then dried to constant weight. Table 2 shows Kuehneromyces mutabilis + + + the efficiency of submerged growth expressed Cortinarius hemitrichus - ++ +++ as grams of mycelium per 100 grams reducing Lactariusrepraesentaneus - sugar. Lactarius necator ++ ++ ++ The results clearly indicated that several of Lactarius deliciosus the species included in this experiment grow aggr. too slowly to be useful for submerged my­ Lactarius rufus + ++ celium production. The growth rate seemed to depend on the medium as well as on the chosen for this experiment. Sugar deter­ species. However, both the media emploved minations were made (a) before inoculation are commonly used in the submerged culti­ and (b) at the time the incubation was in­ vation of fungi. In either or both of the terrupted according to the method of Ber­ media the following ten species yielded trand ( GR:oSSFELD, 1935). A two weeks old mycelium to an amount higher than 25 % stationary culture of mycelium was used as of the weight of the utilized sugar and might inoculum. The mycelium was broken by thus be worth further attention: C antharellus Ultra-Turrax into sterile water and 10 ml of cibarius, Hyprophoropsis aurantiaca, Suillus 41 bovinus, S.
Recommended publications
  • Mycoparasitism Between Squamanita Paradoxa and Cystoderma Amianthinum (Cystodermateae, Agaricales)
    Mycoscience (2010) 51:456–461 DOI 10.1007/s10267-010-0052-9 SHORT COMMUNICATION Mycoparasitism between Squamanita paradoxa and Cystoderma amianthinum (Cystodermateae, Agaricales) P. Brandon Matheny • Gareth W. Griffith Received: 1 January 2010 / Accepted: 23 March 2010 / Published online: 13 April 2010 Ó The Mycological Society of Japan and Springer 2010 Abstract Circumstantial evidence, mostly morphological from basidiocarps or parasitized galls or tissue of other and ecological, points to ten different mushroom host agarics. On occasion, chimeric fruitbodies appear obvious, species for up to fifteen species of the mycoparasitic genus as in S. paradoxa (A.H. Sm. & Singer) Bas (Fig. 1), but for Squamanita. Here, molecular evidence confirms Cysto- other species, the hosts are unknown (Table 1). It appears derma amianthinum as the host for S. paradoxa, a spo- that in all cases, galls induced by Squamanita mycelium radically occurring and rarely collected mycoparasite with contain chlamydospores, and the term protocarpic tuber has extreme host specificity. This is only the second study to been replaced by the term cecidiocarp (Bas and Thoen use molecular techniques to reveal or confirm the identity 1998). Hosts of Squamanita include distantly related of a cecidiocarp of Squamanita species. Phylogenetic species of Agaricales, such as Galerina Earle, Inocybe (Fr.) analysis of combined nuclear ribosomal RNA genes sug- Fr., Hebeloma (Fr.) P. Kumm., Kuehneromyces Singer & gests the monophyly of Squamanita, Cystoderma, and A.H. Sm., and Amanita Pers. However, Squamanita also Phaeolepiota, a clade referred to as the tribe Cystoder- parasitizes species of Phaeolepiota Maire ex Konrad & mateae. If true, S. paradoxa and C. amianthinum would Maubl.
    [Show full text]
  • Covered in Phylloboletellus and Numerous Clamps in Boletellus Fibuliger
    PERSOONIA Published by the Rijksherbarium, Leiden Volume 11, Part 3, pp. 269-302 (1981) Notes on bolete taxonomy—III Rolf Singer Field Museum of Natural History, Chicago, U.S.A. have Contributions involving bolete taxonomy during the last ten years not only widened the knowledge and increased the number of species in the boletes and related lamellate and gastroid forms, but have also introduced a large number of of new data on characters useful for the generic and subgeneric taxonomy these is therefore timely to fungi,resulting, in part, in new taxonomical arrangements. It consider these new data with a view to integratingthem into an amended classifi- cation which, ifit pretends to be natural must take into account all observations of possible diagnostic value. It must also take into account all sufficiently described species from all phytogeographic regions. 1. Clamp connections Like any other character (including the spore print color), the presence or absence ofclamp connections in is neither in of the carpophores here nor other groups Basidiomycetes necessarily a generic or family character. This situation became very clear when occasional clamps were discovered in Phylloboletellus and numerous clamps in Boletellus fibuliger. Kiihner (1978-1980) rightly postulates that cytology and sexuality should be considered wherever at all possible. This, as he is well aware, is not feasible in most boletes, and we must be content to judgeclamp-occurrence per se, giving it importance wherever associated with other characters and within a well circumscribed and obviously homogeneous group such as Phlebopus, Paragyrodon, and Gyrodon. (Heinemann (1954) and Pegler & Young this is (1981) treat group on the family level.) Gyroporus, also clamp-bearing, considered close, but somewhat more removed than the other genera.
    [Show full text]
  • Cystoderma Amianthinum Cystoderma
    © Demetrio Merino Alcántara [email protected] Condiciones de uso Cystoderma amianthinum (Scop.) Fayod, Annls Sci. Nat., Bot., sér. 7 9: 351 (1889) Agaricaceae, Agaricales, Agaricomycetidae, Agaricomycetes, Agaricomycotina, Basidiomycota, Fungi ≡ Agaricus amianthinus Scop., Fl. carniol., Edn 2 (Wien) 2: 434 (1772) ≡ Agaricus amianthinus Scop., Fl. carniol., Edn 2 (Wien) 2: 434 (1772) var. amianthinus ≡ Agaricus amianthinus var. broadwoodiae Berk. & Broome, Ann. Mag. nat. Hist., Ser. 5 3: 202 (1879) ≡ Agaricus granulosus var. amianthinus (Scop.) Fr., Epicr. syst. mycol. (Upsaliae): 18 (1838) [1836-1838] = Agaricus rugosoreticulatum F. Lorinser, Öst. bot. Z. 29: 23 (1879) ≡ Armillaria amianthina (Scop.) Kauffman, Pap. Mich. Acad. Sci. 2: 60 (1923) [1922] = Armillaria rugosoreticulata (F. Lorinser) Zeller [as 'rugoso-reticulata'], Mycologia 25(5): 378 (1933) ≡ Cystoderma amianthinum (Scop.) Konrad & Maubl., Icon. Select. Fung. 6(3): pl. 238 (1927) ≡ Cystoderma amianthinum f. album (Maire) A.H. Sm. & Singer, Pap. Mich. Acad. Sci. 30: 112 (1945) [1944] ≡ Cystoderma amianthinum (Scop.) Fayod, Annls Sci. Nat., Bot., sér. 7 9: 351 (1889) f. amianthinum ≡ Cystoderma amianthinum f. olivaceum Singer, Pap. Mich. Acad. Sci. 30: 111 (1945) [1944] ≡ Cystoderma amianthinum f. rugosoreticulatum (F. Lorinser) A.H. Sm. & Singer, Pap. Mich. Acad. Sci. 30: 110 (1945) [1944] ≡ Cystoderma amianthinum f. rugosoreticulatum (F. Lorinser) Bon [as 'rugulosoreticulatum'], Bull. trimest. Soc. mycol. Fr. 86(1): 99 (1970) ≡ Cystoderma amianthinum (Scop.) Fayod, Annls Sci. Nat., Bot., sér. 7 9: 351 (1889) var. amianthinum ≡ Cystoderma amianthinum var. rugosoreticulatum (F. Lorinser) Bon, Docums Mycol. 29(no. 115): 34 (1999) = Cystoderma longisporum f. rugosoreticulatum (F. Lorinser) Heinem. & Thoen [as 'rugoso-reticulatum'], Bull. trimest. Soc. mycol. Fr. 89(1): 31 (1973) = Cystoderma rugosoreticulatum (F.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • 30518002 Miolo.Indd
    Hoehnea 36(2): 339-348, 1 tab., 3 fi g., 2009 339 Cystoderma, Cystodermella and Ripartitella in Atlantic Forest, São Paulo State, Brazil Marina Capelari1,2 and Tatiane Asai1 Received: 29.01.2009; accepted: 28.05.2009 ABSTRACT - (Cystoderma, Cystodermella and Ripartitella in Atlantic Forest, São Paulo State, Brazil). This paper reports on the genera Cystoderma, Cystodermella and Ripartitella from Atlantic Rainforest, Southeast Brazil. They are represented by Cystoderma chocoanum, Cystodermella contusifolia, C. sipariana and Ripartitella brasiliensis. Cystoderma chocoanum is reported for the fi rst time outside the type locality (Colombia) and its relationship with others species of Cystoderma, based on nLSU rDNA sequences, is discussed. Key words: Basidiomycota, diversity, molecular analysis, taxonomy RESUMO - (Cystoderma, Cystodermella e Ripartitella em Mata Atlântica, São Paulo, Brasil). Este trabalho reporta a ocorrência dos gêneros Cystoderma, Cystodermella e Ripartitella para Mata Atlântica, São Paulo, Brasil. Foram registrados Cystoderma chocoanum, Cystodermella contusifolia, C. sipariana e Ripartitella brasiliensis. Cystoderma chocoanum é registrada pela primeira vez fora da localidade tipo (Colômbia) e sua relação com outras espécies de Cystoderma, baseadas em seqüências de nLSU DNAr, é discutida. Palavras-chave: análise molecular, Basidiomycota, diversidade, taxonomia Introduction stipitate. Singer (1949) considered only one species in the genus, reducing R. squamosidisca to synonym The species from genus Cystoderma Fayod was of R. brasiliensis (Speg.) Singer. The late species separated in two distinct genera, Cystoderma s. str. was based on Pleurotus brasiliensis Speg. collected and Cystodermella by Harmaja (2002), considering in Apiaí, São Paulo State, by Puiggari (Spegazzini the amyloidity of basidiospores; previously unused 1889). Later, R. sipariana (Dennis) Dennis (Dennis differences or tendencies present in the genus, 1970), R.
    [Show full text]
  • 2011 NAMA Toxicology Committee Report North American Mushroom Poisonings
    2011 NAMA Toxicology Committee Report North American Mushroom Poisonings By Michael W. Beug, PhD, Chair NAMA Toxicology Committee P.O. Box 116, Husum, WA 98623 email: [email protected] Abstract In 2011, for North America, the reports to NAMA included 117 people seriously sickened by mushrooms. Thirteen cases involved ingestion of either “Destroying Angel” or “Death Cap” mushrooms in the genus Amanita. There was one death and two people needed a liver transplant after ingestion of a “Destroying Angel”, presumably Amanita bisporigera. Three cases, including one death, involved amatoxins from a Galerina , presumably Galerina marginata . There was one case of kidney damage after consumption of Amanita smithiana and a second case of kidney damage involving two women who consumed an unknown mushroom . The year was noteworthy for the large number of reports of problems from consumption of morels with 22 cases (18.8% of the total). A number of problems were the result of people consuming morels raw – but everyone recovered within 24 hours. The eighteen Chlorophyllum molybdites cases (15% of the total) were sometimes quite severe and often required hospitalization. While Gyromitra cases numbered only nine (eight Gyromitra esculenta and one Gyromitra montana ), four required long hospitalizations as a result of liver damage. In the Northeast, newspaper reports mention long hospitalizations from some of the mushrooms known to cause gastro- intestinal distress, but we have no information on those cases. Twenty seven reports of dogs ill after eating mushrooms included fourteen deaths of the dogs. The dog deaths were mostly attributed to ingestion of mushrooms containing α-amanitin, including probable Amanita bisporigera, Amanita ocreata and Amanita phalloides , though in at least one case the possibility of a deadly Galerina cannot be ruled out.
    [Show full text]
  • Reviewing the World's Edible Mushroom Species: a New
    Received: 5 September 2020 Revised: 4 December 2020 Accepted: 21 December 2020 DOI: 10.1111/1541-4337.12708 COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY Reviewing the world’s edible mushroom species: A new evidence-based classification system Huili Li1,2,3 Yang Tian4 Nelson Menolli Jr5,6 Lei Ye1,2,3 Samantha C. Karunarathna1,2,3 Jesus Perez-Moreno7 Mohammad Mahmudur Rahman8 Md Harunur Rashid8 Pheng Phengsintham9 Leela Rizal10 Taiga Kasuya11 Young Woon Lim12 Arun Kumar Dutta13 Abdul Nasir Khalid14 Le Thanh Huyen15 Marilen Parungao Balolong16 Gautam Baruah17 Sumedha Madawala18 Naritsada Thongklang19,20 Kevin D. Hyde19,20,21 Paul M. Kirk22 Jianchu Xu1,2,3 Jun Sheng23 Eric Boa24 Peter E. Mortimer1,3 1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China 2 East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China 3 Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China 4 College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China 5 Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, Brazil 6 Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, Brazil 7 Colegio de Postgraduados, Campus Montecillo, Texcoco, México 8 Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle,
    [Show full text]
  • Olympic Mushrooms 4/16/2021 Susan Mcdougall
    Olympic Mushrooms 4/16/2021 Susan McDougall With links to species’ pages 206 species Family Scientific Name Common Name Agaricaceae Agaricus augustus Giant agaricus Agaricaceae Agaricus hondensis Felt-ringed Agaricus Agaricaceae Agaricus silvicola Forest Agaric Agaricaceae Chlorophyllum brunneum Shaggy Parasol Agaricaceae Chlorophyllum olivieri Olive Shaggy Parasol Agaricaceae Coprinus comatus Shaggy inkcap Agaricaceae Crucibulum laeve Common bird’s nest fungus Agaricaceae Cyathus striatus Fluted bird’s nest Agaricaceae Cystoderma amianthinum Pure Cystoderma Agaricaceae Cystoderma cf. gruberinum Agaricaceae Gymnopus acervatus Clustered Collybia Agaricaceae Gymnopus dryophilus Common Collybia Agaricaceae Gymnopus luxurians Agaricaceae Gymnopus peronatus Wood woolly-foot Agaricaceae Lepiota clypeolaria Shield dapperling Agaricaceae Lepiota magnispora Yellowfoot dapperling Agaricaceae Leucoagaricus leucothites White dapperling Agaricaceae Leucoagaricus rubrotinctus Red-eyed parasol Agaricaceae Morganella pyriformis Warted puffball Agaricaceae Nidula candida Jellied bird’s-nest fungus Agaricaceae Nidularia farcta Albatrellaceae Albatrellus avellaneus Amanitaceae Amanita augusta Yellow-veiled amanita Amanitaceae Amanita calyptroderma Ballen’s American Caesar Amanitaceae Amanita muscaria Fly agaric Amanitaceae Amanita pantheriana Panther cap Amanitaceae Amanita vaginata Grisette Auriscalpiaceae Lentinellus ursinus Bear lentinellus Bankeraceae Hydnellum aurantiacum Orange spine Bankeraceae Hydnellum complectipes Bankeraceae Hydnellum suaveolens
    [Show full text]
  • Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil
    Mycosphere Doi 10.5943/mycosphere/3/6/11 Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil Ferreira AJ1* and Cortez VG1 1Universidade Federal do Paraná, Rua Pioneiro 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil Ferreira AJ, Cortez VG 2012 – Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil. Mycosphere 3(6), 962–976, Doi 10.5943 /mycosphere/3/6/11 A macromycete survey at the São Camilo State Park, a seasonal semideciduous forest fragment in Southern Brazil, State of Paraná, was undertaken. Six lepiotoid fungi were identified: Lepiota elaiophylla, Leucoagaricus lilaceus, L. rubrotinctus, Leucocoprinus cretaceus, Macrolepiota colombiana and Rugosospora pseudorubiginosa. Detailed descriptions and illustrations are presented for all species, as well as a brief discussion on their taxonomy and geographical distribution. Macrolepiota colombiana is reported for the first time in Brazil and Leucoagaricus rubrotinctus is a new record from the State of Paraná. Key words – Agaricales – Brazilian mycobiota – new records Article Information Received 30 October 2012 Accepted 14 November 2012 Published online 3 December 2012 *Corresponding author: Ana Júlia Ferreira – e-mail: [email protected] Introduction who visited and/or studied collections from the Agaricaceae Chevall. (Basidiomycota) country in the 19th century. More recently, comprises the impressive number of 1340 researchers have studied agaricoid diversity in species, classified in 85 agaricoid, gasteroid the Northeast (Wartchow et al. 2008), and secotioid genera (Kirk et al. 2008), and Southeast (Capelari & Gimenes 2004, grouped in ten clades (Vellinga 2004). The Albuquerque et al. 2010) and South (Rother & family is of great economic and medical Silveira 2008, 2009a, 2009b).
    [Show full text]
  • Key to Alberta Edible Mushrooms Note: Key Should Be Used With"Mushrooms of Western Canada"
    Key to Alberta Edible Mushrooms Note: Key should be used with"Mushrooms of Western Canada". The key is designed to help narrow the field of possibilities. Should never be used without more detailed descriptions provided in field guides. Always confirm your choice with a good field guide. Go A Has pores or sponge like tubes on underside 2 to 1 Go B Does not have visible pores or sponge like tubes 22 to Leatiporus sulphureous A Bright yellow top, brighter pore surface, shelf like growth on wood "Chicken of the woods" 2 Go B not as above with pores or sponge like tubes 3 to Go A Has sponge like tube layer easily separated from cap 4 to 3 B Has shallow pore layer not easily separated from cap Not described in this key A Medium to large brown cap, thick stalk, fine embossed netting on stalk Boletus edulis 4 Go B Not as above with sponge like tube layer 5 to A Dull brown to beige cap, fine embossed netting on stalk Not described in this key 5 Go B Not as above with sponge like tube layer 6 to Go A Dry cap, rough ornamented stem, with flesh staining various shades of pink to gray 7 to 6 Go B Not as above 12 to Go A Cap orange to red, never brown or white 8 to 7 Go B Cap various shades of dark or light brown to beige/white 10 to A Dark orangey red cap, velvety cap surface, growing exclusively with conifers Leccinum fibrilosum 8 Go B Orangey cap, growing in mixed or pure aspen poplar stands 9 to Orangey - red cap, skin flaps on cap margins, slowly staining pinkish gray, earliest of the leccinums starting A Leccinum boreale in June.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • New Data on the Occurence of an Element Both
    Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif.
    [Show full text]