A Review of the South American Cichlid Genus Cichla, with Descriptions of Nine New Species (Teleostei: Cichlidae)

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the South American Cichlid Genus Cichla, with Descriptions of Nine New Species (Teleostei: Cichlidae) See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228489880 A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae) Article in Ichthyological Exploration of Freshwaters · January 2007 CITATIONS READS 143 1,858 2 authors: Sven Kullander Efrem Jorge Gondim Ferreira Swedish Museum of Natural History Instituto Nacional de Pesquisas da Amazônia 195 PUBLICATIONS 1,666 CITATIONS 52 PUBLICATIONS 632 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Ecology and Conservation of Freshwater Fishes View project Phylogeny of Cyprinidae View project All content following this page was uploaded by Efrem Jorge Gondim Ferreira on 16 March 2016. The user has requested enhancement of the downloaded file. Verlag Dr. Friedrich Pfeil ISSN 0936-9902 Ichthyological Exploration of Freshwaters An international journal for fi eld-orientated ichthyology Volume 17 Number 4 Ichthyological Exploration of Freshwaters An international journal for fi eld-orientated ichthyology Volume 17 • Number 4 • December 2006 pages 289-398, 93 fi gs., 27 tabs. Managing Editor Maurice Kottelat, Route de la Baroche 12, Case postale 57 CH–2952 Cornol, Switzerland Tel. + 41 - 32 - 4 62 31 75 / Fax + 41 - 32 - 4 62 22 59 / E-mail [email protected] Editorial board Pier Giorgio Bianco, Dipartimento di Zoologia, Università, Napoli, Italy Ralf Britz, Department of Zoology, The Natural History Museum, London, United Kingdom Sven O. Kullander, Naturhistoriska Riksmuseet, Stockholm, Sweden Helen K. Larson, Museum and Art Gallery of the Northern Territory, Darwin, Australia Lukas Rüber, Department of Zoology, The Natural History Museum, London, United Kingdom Ivan Sazima, Departamento de Zoologia & Museu de História Natural, Campinas, Brazil Paul H. Skelton, South African Institute for Aquatic Biodiversity, Grahamstown, South Africa Heok Hui Tan, Raffl es Museum of Biodiversity Research, National University of Singapore, Singapore Ichthyological Exploration of Freshwaters is published quarterly Subscriptions should be addressed to the Publisher: Verlag Dr. Friedrich Pfeil, Wolfratshauser Str. 27, D–81379 München, Germany PERSONAL SUBSCRIPTION : EURO 100 per Year/volume - 4 issues (includes surface mail shipping) INSTITUTIONAL SUBSCRIPTION : EURO 180 per Year/volume - 4 issues (includes surface mail shipping) Manuscripts should be addressed to the Managing Editor: Maurice Kottelat, Route de la Baroche 12, Case postale 57, CH –2952 Cornol, Switzerland CIP-Titelaufnahme der Deutschen Bibliothek Ichthyological exploration of freshwaters : an international journal for fi eld-orientated ichthyology. – München : Pfeil. Erscheint jährl. viermal. – Aufnahme nach Vol. 1, No. 1 (1990) ISSN 0936-9902 Vol. 1, No. 1 (1990) – Copyright © 2006 by Verlag Dr. Friedrich Pfeil, München, Germany All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Publisher, Verlag Dr. Friedrich Pfeil, Wolfratshauser Str. 27, D-81379 München, Germany. Printed by Druckerei Wiesendanger, Murnau ISSN 0936-9902 Printed in Germany Verlag Dr. Friedrich Pfeil, Wolfratshauser Str. 27, D-81379 München, Germany Tel. + 49 - (0)89 - 74 28 27 0 – Fax + 49 - (0)89 - 72 42 77 2 – E-mail: [email protected] – www.pfeil-verlag.de 289 Ichthyol. Explor. Freshwaters, Vol. 17, No. 4, pp. 289-398, 93 figs., 27 tabs., December 2006 © 2006 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae) Sven O. Kullander* and Efrem J. G. Ferreira** Cichla, with the junior synonym Acharnes, is widely distributed in the Amazon, Tocantins, and Orinoco river basins, and in the smaller rivers draining the Guianas to the Atlantic Ocean. Within South America transplanta- tions are recorded from the Paraná and Paraguay river drainages in Paraguay and Brazil, and the Paraíba do Sul and Paraguaçu rivers in Brazil. The genus comprises 15 species recognized by external characters of which colour pattern and meristics are most significant. In six species juveniles possess three dark blotches on the side and a dark band connecting the posterior blotch to the dark blotch at the caudal-fin base: Cichla ocellaris is known from the Guianas, including the Marowijne, Suriname, Corantijn, Demerara, and Essequibo river drainages, and also the upper Rio Branco in Brazil. Cichla orinocensis is known from the Negro and Orinoco river drainages in Brazil, Colombia, and Venezuela. Cichla monoculus is widespread in the floodplains of the Amazon basin, in Colombia, Peru, and Brazil, and also col- lected from rivers of Amapá in Brazil, and the lower Oyapock River on the border between Brazil and French Guiana. Cichla nigromaculata is known from the upper Rio Orinoco in Venezuela and, tentatively, the middle Rio Negro in Brazil. Cichla kelberi, new species, is restricted to the Tocantins river basin, but also found transplanted in the Paraná and Paraíba do Sul river drainages and reported from the Nordeste region of Brazil. Cichla pleio- zona, new species, occurs in the Madre de Dios, Beni, and Guaporé river drainages in Bolivia and Brazil, and in the Rio Jamari in Brazil. A lectotype is fixed for Cychla toucounarai which is a synonym of Cichla monoculus. Juveniles and young of the remaining nine species, in addition to the three midlateral blotches, possess a dark horizontal band extending from the head to the dark blotch at the caudal-fin base: Cichla mirianae, new species, is restricted to the upper Tapajós river drainage, in the Juruena and Teles Pires rivers, and the upper Xingu river drainage in Brazil. Cichla melaniae, new species, is restricted to the lower Xingu river drainage in Brazil. Cichla piquiti, new species, is restricted to the Tocantins river basin, but transplanted in the Paraná river basin in Brazil and Paraguay. Cichla thyrorus, new species, occurs in the Rio Trombetas in Brazil, upstream from the Cachoeira Porteira. Cichla jariina, new species, occurs in the Rio Jari in Brazil, where it is so far recorded only from the region of the Santo Antonio rapids. Cichla pinima, new species, occurs in the lower parts of southern tributaries of the Rio Amazonas in Brazil (Tapajós, Curuá-Una, Xingu), and the lower Tocantins and Capim rivers. Tentatively identified specimens are recorded from the Amapá, Araguari, and Canumã rivers in Brazil. Cichla pinima occurs translocated in the Rio Paraguaçu in southeastern Brazil, and is reported as translocated from the northeast of Brazil. Cichla vazzoleri, new species, occurs in the Uatumã and lower Trombetas rivers in Brazil. Cichla temensis is known from the Negro and Orinoco river drainages in Brazil, Colombia, and Venezuela. It is also recorded from blackwater rivers along the Rio Solimões-Amazonas in Brazil (Tefé, Rio Puraquequara, Rio Uatumã, and Silves). Cichla intermedia is restricted to the Casiquiare and Orinoco river drainages in Venezuela. * Department of Vertebrate Zoology, Swedish Museum of Natural History, POB 50007, SE-104 05 Stockholm, Sweden. E-mail: [email protected] ** Centro de Pesquisas de Biologia Acuatica, INPA, CP 478, 69083-000 Manaus, AM, Brazil. E-mail: [email protected] Ichthyol. Explor. Freshwaters, Vol. 17, No. 4 290 A phylogenetic analysis suggests that C. intermedia, C. piquiti, and C. melaniae are successive basal species, whereas an unresolved group composed of C. jariina, C. pinima, C. temensis, C. thyrorus, and C. vazzoleri is the sister group of (C. mirianae,(C. orinocensis,((C. ocellaris, C. nigromaculata),(C. monoculus, C. kelberi, C. pleiozona))). Introduction Fifteen nominal species are referable to Cich- la (Table 1). The majority were described in the Species of the genus Cichla are among the major period 1821-1855 and frequently based on field food and game fishes in South America. They are observations and drawings. Revisions by Günther known locally by the collective names tucunaré (1862), Pellegrin (1904), and Regan (1906) distin- in most of the Amazon region, pavón in Vene- guished principally only the two species C. temen- zuela, toekoenali in Suriname, and lukanani in sis and C. ocellaris with varying synonym lists. Guyana (Kullander, 2003). Günther (1862) also listed C. conibos and C. mul- Cichla has been the subject of several recent tifasciata, and Regan recognized C. multifasciata reviews dealing with phylogenetic position (Stiass- based on the drawings and sketchy information ny, 1982, 1987; Kullander, 1986, 1998), life history from Castelnau (1855). Castelnau’s names, how- (Zaret, 1980), and particular species (Machado, ever, more likely refer to unrecognizable species 1971, 1973; Kullander, 1986; Kullander & Nijssen, of Crenicichla (Kullander, 1986). Most literature 1989). There are surprisingly few studies on the before Machado’s (1971) revision mentioned only ecology and behaviour of Cichla. Lowe-McConnell two species, viz. C. temensis and C. ocellaris. (1969) reported on field observations of C. ocella- Ringuelet et al. (1967: 507) reported C. chacoen- ris in Guyana, and Winemiller (2001) summarised sis (Holmberg, 1891) from Argentina. Holmberg ecological
Recommended publications
  • Royal Peacock Bass (Cichla Intermedia) Ecological Risk Screening Summary
    Royal Peacock Bass (Cichla intermedia) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, August 2011 Revised, May 2018 Web Version, 9/7/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “South America: Orinoco River basin, tributaries of the Orinoco River, and the Casiquiare River in Venezuela. Probably occurs in Colombia.” Status in the United States This species has not been reported as introduced or established in the United States. This species is present in the aquarium trade in the United States, for example: From Bluegrass Aquatics (2018): “Intermedia Peacock Bass Cichlid REGULAR $232.48” “Intermedia Peacock Bass Cichlid REGULAR Cichla Intermedia Known as the "Royal" peacock by American anglers.” 1 Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Perciformes Suborder Labroidei Family Cichlidae Genus Cichla Species Cichla intermedia Machado-Allison, 1971” “Taxonomic Status: Current Standing: valid” Size, Weight, and Age Range From Froese and Pauly (2018): “[…] range 28 - ? cm Max length: 55.0 cm TL male/unsexed; [IGFA 2001]; max. published weight: 3,000 g [IGFA 2001].” Environment From Froese and Pauly (2018): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018): “South America: Orinoco River basin, tributaries of the Orinoco River, and the Casiquiare River in Venezuela.
    [Show full text]
  • Amazon Alive: a Decade of Discoveries 1999-2009
    Amazon Alive! A decade of discovery 1999-2009 The Amazon is the planet’s largest rainforest and river basin. It supports countless thousands of species, as well as 30 million people. © Brent Stirton / Getty Images / WWF-UK © Brent Stirton / Getty Images The Amazon is the largest rainforest on Earth. It’s famed for its unrivalled biological diversity, with wildlife that includes jaguars, river dolphins, manatees, giant otters, capybaras, harpy eagles, anacondas and piranhas. The many unique habitats in this globally significant region conceal a wealth of hidden species, which scientists continue to discover at an incredible rate. Between 1999 and 2009, at least 1,200 new species of plants and vertebrates have been discovered in the Amazon biome (see page 6 for a map showing the extent of the region that this spans). The new species include 637 plants, 257 fish, 216 amphibians, 55 reptiles, 16 birds and 39 mammals. In addition, thousands of new invertebrate species have been uncovered. Owing to the sheer number of the latter, these are not covered in detail by this report. This report has tried to be comprehensive in its listing of new plants and vertebrates described from the Amazon biome in the last decade. But for the largest groups of life on Earth, such as invertebrates, such lists do not exist – so the number of new species presented here is no doubt an underestimate. Cover image: Ranitomeya benedicta, new poison frog species © Evan Twomey amazon alive! i a decade of discovery 1999-2009 1 Ahmed Djoghlaf, Executive Secretary, Foreword Convention on Biological Diversity The vital importance of the Amazon rainforest is very basic work on the natural history of the well known.
    [Show full text]
  • A New Colorful Species of Geophagus (Teleostei: Cichlidae), Endemic to the Rio Aripuanã in the Amazon Basin of Brazil
    Neotropical Ichthyology, 12(4): 737-746, 2014 Copyright © 2014 Sociedade Brasileira de Ictiologia DOI: 10.1590/1982-0224-20140038 A new colorful species of Geophagus (Teleostei: Cichlidae), endemic to the rio Aripuanã in the Amazon basin of Brazil Gabriel C. Deprá1, Sven O. Kullander2, Carla S. Pavanelli1,3 and Weferson J. da Graça4 Geophagus mirabilis, new species, is endemic to the rio Aripuanã drainage upstream from Dardanelos/Andorinhas falls. The new species is distinguished from all other species of the genus by the presence of one to five large black spots arranged longitudinally along the middle of the flank, in addition to the black midlateral spot that is characteristic of species in the genus and by a pattern of iridescent spots and lines on the head in living specimens. It is further distinguished from all congeneric species, except G. camopiensis and G. crocatus, by the presence of seven (vs. eight or more) scale rows in the circumpeduncular series below the lateral line (7 in G. crocatus; 7-9 in G. camopiensis). Including the new species, five cichlids and 11 fish species in total are known only from the upper rio Aripuanã, and 15 fish species in total are known only from the rio Aripuanã drainage. Geophagus mirabilis, espécie nova, é endêmica da drenagem do rio Aripuanã, a montante das quedas de Dardanelos/ Andorinhas. A espécie nova se distingue de todas as outras espécies do gênero pela presença de uma a cinco manchas pretas grandes distribuídas longitudinalmente ao longo do meio do flanco, em adição à mancha preta no meio do flanco característica das espécies do gênero, e por um padrão de pontos e linhas iridescentes sobre a cabeça em espécimes vivos.
    [Show full text]
  • Multilocus Phylogeny of Crenicichla (Teleostei: Cichlidae), with Biogeography of the C
    Molecular Phylogenetics and Evolution 62 (2012) 46–61 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: Species flocks as a model for sympatric speciation in rivers ⇑ Lubomír Piálek a, , Oldrˇich Rˇícˇan a, Jorge Casciotta b, Adriana Almirón b, Jan Zrzavy´ a a University of South Bohemia, Faculty of Science, Department of Zoology, Branišovská 31, 370 05 Cˇeské Budeˇjovice, Czech Republic b Museo de La Plata, División Zoología Vertebrados, UNLP, Paseo del Bosque, 1900 La Plata, Argentina article info abstract Article history: First multilocus analysis of the largest Neotropical cichlid genus Crenicichla combining mitochondrial Received 19 April 2011 (cytb, ND2, 16S) and nuclear (S7 intron 1) genes and comprising 602 sequences of 169 specimens yields Revised 1 September 2011 a robust phylogenetic hypothesis. The best marker in the combined analysis is the ND2 gene which con- Accepted 9 September 2011 tributes throughout the whole range of hierarchical levels in the tree and shows weak effects of satura- Available online 25 September 2011 tion at the 3rd codon position. The 16S locus exerts almost no influence on the inferred phylogeny. The nuclear S7 intron 1 resolves mainly deeper nodes. Crenicichla is split into two main clades: (1) Teleocichla, Keywords: the Crenicichla wallacii group, and the Crenicichla lugubris–Crenicichla saxatilis groups (‘‘the TWLuS Hybridization clade’’); (2) the Crenicichla reticulata group and the Crenicichla lacustris group–Crenicichla macrophthalma Iguazú Paraná (‘‘the RMLa clade’’). Our study confirms the monophyly of the C. lacustris species group with very high South America support.
    [Show full text]
  • Vulnerability of the Biota in Riverine and Seasonally Flooded Habitats to Damming of Amazonian Rivers
    Received: 11 December 2019 Revised: 8 April 2020 Accepted: 5 June 2020 DOI: 10.1002/aqc.3424 SPECIAL ISSUE ARTICLE Vulnerability of the biota in riverine and seasonally flooded habitats to damming of Amazonian rivers Edgardo M. Latrubesse1 | Fernando M. d'Horta2 | Camila C. Ribas2 | Florian Wittmann3 | Jansen Zuanon2 | Edward Park4 | Thomas Dunne5 | Eugenio Y. Arima6 | Paul A. Baker7 1Asian School of the Environment and Earth Observatory of Singapore (EOS), Nanyang Abstract Technological University (NTU), Singapore 1. The extent and intensity of impacts of multiple new dams in the Amazon basin on 2 National Institute of Amazonian Research specific biological groups are potentially large, but still uncertain and need to be (INPA), Manaus, Brazil 3Institute of Floodplain Ecology, Karlsruhe better understood. Institute of Technology, Rastatt, Germany 2. It is known that river disruption and regulation by dams may affect sediment sup- 4 National Institute of Education (NIE), plies, river channel migration, floodplain dynamics, and, as a major adverse conse- Nanyang Technological University, Singapore quence, are likely to decrease or even suppress ecological connectivity among 5Bren School of Environmental Science and Management, University of California (UCSB), populations of aquatic organisms and organisms dependent upon seasonally Santa Barbara, California, USA flooded environments. 6Department of Geography and the Environment, University of Texas at Austin, 3. This article complements our previous results by assessing the relationships Austin, Texas, USA between dams, our Dam Environmental Vulnerability Index (DEVI), and the biotic 7 Nicholas School of the Environment, Duke environments threatened by the effects of dams. Because of the cartographic rep- University, Durham, North Carolina, USA resentation of DEVI, it is a useful tool to compare the potential hydrophysical Correspondence impacts of proposed dams in the Amazon basin with the spatial distribution of Edgardo Latrubesse, Asian School of the Environment and Earth Observatory of biological diversity.
    [Show full text]
  • Mesonauta Egregius „Orinoko-Delta“ 3
    „Goldene“ Flaggenbuntbarsche: Anmerkungen zur Pflege und Zucht von Mesonauta egregius „Orinoko-Delta“ 3. Teil Roland F. Fischer In dieser Situation, in der die jungen Flaggenbunt- barsche für eine kurze Zeit vor dem Verlöschen der Aquarienbeleuchtung in ihrer Ernährungsweise Verhalten der Jungfische vom „Räuber“ zum „Weidefisch“ wechseln, Die von der Wasseroberfläche abgesaugten Jung- suchen beide Elternfische erneut Kontakt zur Brut. fische werden nun von beiden Elternfischen an eine Sie positionieren sich nun nicht mehr unterhalb der bis knapp unter die Wasseroberfläche reichende Jungfische, sondern nur wenige Zentimeter entfernt Moorkienwurzel verbracht. Dort richten sich die vom ausgewählten „Schlafplatz“ in unmittelbarer jungen Mesonauta wie ehemals als Larven, den Nähe zu der „hyperaktiv“ wimmelnden Schar. Kopf nach oben, am Substrat aus. Sie liegen dabei Diese direkte körperliche Nähe zu den „weiden- der Wurzel so eng an, dass der Eindruck entsteht, den“ Jungfischen bewirkt, dass die Brut ohne die Brut würde mittels larvaler Kopfdrüsen am großen Energieaufwand zwischen senkrechtstehen- Substrat kleben. Während Weidner (1996) noch der Wurzel und Elternfisch wechseln kann. An bei- aktive Kopfdrüsen bei seiner Mesonauta-insignis- den „Substraten“ wird gleichermaßen heftig „ge- Brut feststellen konnte, hat bisher noch keine M.- zerrt“. Dabei unterscheidet die Brut nicht, ob es egregius-Brut in den Aquarien des Autos länger als sich um Aufwuchs an einer Moorkienwurzel oder ein paar Augenblicke diese larvale Körperhaltung die Körperoberfläche eines Elternteils handelt. Das aufrecht erhalten. Im Gegenteil, mit zunehmender „Beweiden“ erfolgt für den außenstehenden Beo- Individuendichte im „Schlafpulk“ nimmt die Un- bachter ungerichtet und zufällig. Zudem wechselt ruhe zu, die Jungfische wandern, immer noch ver- die Brut unregelmäßig zwischen beiden Substraten, tikal ausgerichtet, am Substrat sukzessive nach ohne irgendeine Präferenz gegenüber einer der oben, um schließlich alle wieder in die Horizontale Futterquellen zu zeigen.
    [Show full text]
  • Disentangling the Roles of Form and Motion in Fish Swimming Performance
    Disentangling the Roles of Form and Motion in Fish Swimming Performance The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046515 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Disentangling the Roles of Form and Motion in Fish Swimming Performance A dissertation presented by Kara Lauren Feilich to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2017 © 2017 Kara Lauren Feilich All rights reserved. Dissertation Advisor: Professor George Lauder Kara Lauren Feilich Disentangling the Roles of Form and Motion in Fish Swimming Performance Abstract A central theme of comparative biomechanics is linking patterns of variation in morphology with variation in locomotor performance. This presents a unique challenge in fishes, given their extraordinary morphological diversity and their complex fluid-structure interactions. This challenge is compounded by the fact that fishes with varying anatomy also use different kinematics, making it difficult to disentangle the effects of morphology and kinematics on performance. My dissertation used interdisciplinary methods to study evolutionary variation in body shape with respect to its consequences for swimming performance. In Chapter 1, I used bio-inspired mechanical models of caudal fins to study the effects of two evolutionary trends in fish morphology, forked tails and tapered caudal peduncles, on swimming performance.
    [Show full text]
  • Out of Lake Tanganyika: Endemic Lake Fishes Inhabit Rapids of the Lukuga River
    355 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 355-376, 5 figs., 3 tabs., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River Sven O. Kullander* and Tyson R. Roberts** The Lukuga River is a large permanent river intermittently serving as the only effluent of Lake Tanganyika. For at least the first one hundred km its water is almost pure lake water. Seventy-seven species of fish were collected from six localities along the Lukuga River. Species of cichlids, cyprinids, and clupeids otherwise known only from Lake Tanganyika were identified from rapids in the Lukuga River at Niemba, 100 km from the lake, whereas downstream localities represent a Congo River fish fauna. Cichlid species from Niemba include special- ized algal browsers that also occur in the lake (Simochromis babaulti, S. diagramma) and one invertebrate picker representing a new species of a genus (Tanganicodus) otherwise only known from the lake. Other fish species from Niemba include an abundant species of clupeid, Stolothrissa tanganicae, otherwise only known from Lake Tangan- yika that has a pelagic mode of life in the lake. These species demonstrate that their adaptations are not neces- sarily dependent upon the lake habitat. Other endemic taxa occurring at Niemba are known to frequent vegetat- ed shore habitats or river mouths similar to the conditions at the entrance of the Lukuga, viz. Chelaethiops minutus (Cyprinidae), Lates mariae (Latidae), Mastacembelus cunningtoni (Mastacembelidae), Astatotilapia burtoni, Ctenochromis horei, Telmatochromis dhonti, and Tylochromis polylepis (Cichlidae). The Lukuga frequently did not serve as an ef- fluent due to weed masses and sand bars building up at the exit, and low water levels of Lake Tanganyika.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • State of the Amazon: Freshwater Connectivity and Ecosystem Health WWF LIVING AMAZON INITIATIVE SUGGESTED CITATION
    REPORT LIVING AMAZON 2015 State of the Amazon: Freshwater Connectivity and Ecosystem Health WWF LIVING AMAZON INITIATIVE SUGGESTED CITATION Macedo, M. and L. Castello. 2015. State of the Amazon: Freshwater Connectivity and Ecosystem Health; edited by D. Oliveira, C. C. Maretti and S. Charity. Brasília, Brazil: WWF Living Amazon Initiative. 136pp. PUBLICATION INFORMATION State of the Amazon Series editors: Cláudio C. Maretti, Denise Oliveira and Sandra Charity. This publication State of the Amazon: Freshwater Connectivity and Ecosystem Health: Publication editors: Denise Oliveira, Cláudio C. Maretti, and Sandra Charity. Publication text editors: Sandra Charity and Denise Oliveira. Core Scientific Report (chapters 1-6): Written by Marcia Macedo and Leandro Castello; scientific assessment commissioned by WWF Living Amazon Initiative (LAI). State of the Amazon: Conclusions and Recommendations (chapter 7): Cláudio C. Maretti, Marcia Macedo, Leandro Castello, Sandra Charity, Denise Oliveira, André S. Dias, Tarsicio Granizo, Karen Lawrence WWF Living Amazon Integrated Approaches for a More Sustainable Development in the Pan-Amazon Freshwater Connectivity Cláudio C. Maretti; Sandra Charity; Denise Oliveira; Tarsicio Granizo; André S. Dias; and Karen Lawrence. Maps: Paul Lefebvre/Woods Hole Research Center (WHRC); Valderli Piontekwoski/Amazon Environmental Research Institute (IPAM, Portuguese acronym); and Landscape Ecology Lab /WWF Brazil. Photos: Adriano Gambarini; André Bärtschi; Brent Stirton/Getty Images; Denise Oliveira; Edison Caetano; and Ecosystem Health Fernando Pelicice; Gleilson Miranda/Funai; Juvenal Pereira; Kevin Schafer/naturepl.com; María del Pilar Ramírez; Mark Sabaj Perez; Michel Roggo; Omar Rocha; Paulo Brando; Roger Leguen; Zig Koch. Front cover Mouth of the Teles Pires and Juruena rivers forming the Tapajós River, on the borders of Mato Grosso, Amazonas and Pará states, Brazil.
    [Show full text]
  • Category Popular Name of the Group Phylum Class Invertebrate
    Category Popular name of the group Phylum Class Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Reptile Chordata Reptilia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Mollusk Mollusca Bivalvia Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Mollusk Mollusca Bivalvia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate
    [Show full text]
  • The Role of Piscivores in a Species-Rich Tropical Food
    THE ROLE OF PISCIVORES IN A SPECIES-RICH TROPICAL RIVER A Dissertation by CRAIG ANTHONY LAYMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2004 Major Subject: Wildlife and Fisheries Sciences THE ROLE OF PISCIVORES IN A SPECIES-RICH TROPICAL RIVER A Dissertation by CRAIG ANTHONY LAYMAN Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: _________________________ _________________________ Kirk O. Winemiller Lee Fitzgerald (Chair of Committee) (Member) _________________________ _________________________ Kevin Heinz Daniel L. Roelke (Member) (Member) _________________________ Robert D. Brown (Head of Department) August 2004 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT The Role of Piscivores in a Species-Rich Tropical River. (August 2004) Craig Anthony Layman, B.S., University of Virginia; M.S., University of Virginia Chair of Advisory Committee: Dr. Kirk O. Winemiller Much of the world’s species diversity is located in tropical and sub-tropical ecosystems, and a better understanding of the ecology of these systems is necessary to stem biodiversity loss and assess community- and ecosystem-level responses to anthropogenic impacts. In this dissertation, I endeavored to broaden our understanding of complex ecosystems through research conducted on the Cinaruco River, a floodplain river in Venezuela, with specific emphasis on how a human-induced perturbation, commercial netting activity, may affect food web structure and function. I employed two approaches in this work: (1) comparative analyses based on descriptive food web characteristics, and (2) experimental manipulations within important food web modules.
    [Show full text]