State of the Amazon: Freshwater Connectivity and Ecosystem Health WWF LIVING AMAZON INITIATIVE SUGGESTED CITATION

Total Page:16

File Type:pdf, Size:1020Kb

State of the Amazon: Freshwater Connectivity and Ecosystem Health WWF LIVING AMAZON INITIATIVE SUGGESTED CITATION REPORT LIVING AMAZON 2015 State of the Amazon: Freshwater Connectivity and Ecosystem Health WWF LIVING AMAZON INITIATIVE SUGGESTED CITATION Macedo, M. and L. Castello. 2015. State of the Amazon: Freshwater Connectivity and Ecosystem Health; edited by D. Oliveira, C. C. Maretti and S. Charity. Brasília, Brazil: WWF Living Amazon Initiative. 136pp. PUBLICATION INFORMATION State of the Amazon Series editors: Cláudio C. Maretti, Denise Oliveira and Sandra Charity. This publication State of the Amazon: Freshwater Connectivity and Ecosystem Health: Publication editors: Denise Oliveira, Cláudio C. Maretti, and Sandra Charity. Publication text editors: Sandra Charity and Denise Oliveira. Core Scientific Report (chapters 1-6): Written by Marcia Macedo and Leandro Castello; scientific assessment commissioned by WWF Living Amazon Initiative (LAI). State of the Amazon: Conclusions and Recommendations (chapter 7): Cláudio C. Maretti, Marcia Macedo, Leandro Castello, Sandra Charity, Denise Oliveira, André S. Dias, Tarsicio Granizo, Karen Lawrence WWF Living Amazon Integrated Approaches for a More Sustainable Development in the Pan-Amazon Freshwater Connectivity Cláudio C. Maretti; Sandra Charity; Denise Oliveira; Tarsicio Granizo; André S. Dias; and Karen Lawrence. Maps: Paul Lefebvre/Woods Hole Research Center (WHRC); Valderli Piontekwoski/Amazon Environmental Research Institute (IPAM, Portuguese acronym); and Landscape Ecology Lab /WWF Brazil. Photos: Adriano Gambarini; André Bärtschi; Brent Stirton/Getty Images; Denise Oliveira; Edison Caetano; and Ecosystem Health Fernando Pelicice; Gleilson Miranda/Funai; Juvenal Pereira; Kevin Schafer/naturepl.com; María del Pilar Ramírez; Mark Sabaj Perez; Michel Roggo; Omar Rocha; Paulo Brando; Roger Leguen; Zig Koch. Front cover Mouth of the Teles Pires and Juruena rivers forming the Tapajós River, on the borders of Mato Grosso, Amazonas and Pará states, Brazil. © Zig Koch / WWF-Living Amazon Initiative. WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. WWF Living Amazon Initiative is one of nine Global Initiatives of the WWF Network. It has been developed since 2006 and implemented since 2008. Since 2013 it has had a focused approach, as an initiative dealing with regional or transboundary issues related to protected areas and indigenous territories, hydropower and deforestation, complementing the work done nationally and locally by the offices and organizations of the WWF Network working in the Amazon. A WWF Living Amazon Initiative production Published in April 2015 by WWF – World Wide Fund For Nature (Formerly World Wildlife Fund - Gland, Switzerland). Any reproduction in full or in part must mention the title and credit the above-mentioned publisher as the copyright owner. © Text 2015 WWF All rights reserved. ISBN 978-2-940529-19-3 For more information: [email protected] www.panda.org/amazon 1st Edition Brasilia, Brazil April, 2015 LIST OF ACRONYMS CONTENTS LIST OF ACRONYMS 4 APPs Areas of Permanent Preservation ABC Low-Carbon Agriculture FOREWORD 8 ACTO Amazon Cooperation Treaty Organization EXECUTIVE SUMMARY 10 ARPA Amazon Region Protected Areas Program BNDES Brazilian National Economic and Social Development Bank 1. INTRODUCTION 18 C carbon 1.1. Amazon hydrological connectivity 20 CAF Latin American Development Bank 1.2. Objectives 21 CH4 methane 2. AMAZON FRESHWATER ECOSYSTEMS 26 CO2 carbon dioxide COSIPLAN The South American Infrastructure and Planning Council 2.1. Freshwater ecosystem types 27 EIA Environmental Impact Assessment 2.2. Aquatic ecosystem services 30 EIA-RIMA Environmental Impact Assessment and Report on Impacts to 3. DRIVERS OF HYDROLOGICAL ALTERATION 38 the Environment 3.1. Dams 39 ET evapotranspiration 3.2. Land-cover change 42 Fonplata Plata Basin Development Fund 3.3. Mineral extraction 45 GHG greenhouse gas 3.4. Climate change 46 Hg mercury IBI Index of Biotic Integrity 4. IMPACTS ON FRESHWATER ECOSYSTEMS 60 IDB Inter-American Development Bank 4.1. Disruption of physical processes 60 IIRSA The Initiative for the Integration of the Regional Infrastructure 4.2. Disruption of biological processes 61 of South America 4.3. Disruption of ecosystem services 64 IPs indigenous peoples IRBM integrated river basin management 5. EXISTING POLICIES 68 ITs indigenous territories 5.1. Protected areas 68 LAI Living Amazon Initiative 5.2. Climate and land-use policy 70 MeHg methylmercury 5.3. Water resource management 71 NPP net primary production 5.4. Environmental licensing of dams 72 PA protected area 5.5. Gaps in existing policies 75 PNMC National Climate Change Plan (Brazil) 6. MANAGING FRESHWATER ECOSYSTEM CONNECTIVITY 96 PPCDAm Action Plan for Prevention and Control of Deforestation in the 6.1. Assessing vulnerability 97 Legal Amazon 6.3. Developing indicators of ecosystem integrity 99 Q discharge 6.4. Implementing management 102 RIMA Report on Impacts to the Environment SAMS South American Monsoon System 7. CONCLUSIONS AND RECOMMENDATIONS 106 THg total mercury 7.1 Freshwater ecosystems and hydrological connectivity 107 TRMM Tropical Rainforest Monitoring Mission 7.2 Ecosystem services and social impacts 109 UNASUR Union of South American Nations 7.3 Managing ecological impacts 110 WHRC Woods Hole Research Center 7.4 Monitoring and evaluation 112 DS Changes in soil water storage 8. REFERENCES 122 9. ACKNOWLEDGEMENTS 134 State of the Amazon: Freshwater Connectivity and Ecosystem Health p. 4 © Denise Oliveira/WWF-Living Denise © Initiative Amazon TABLE OF EXTRA CONTENTS THE AMAZON IS… 22 FISH TYPES 33 AMAZON FRESHWATER ECOSYSTEM TYPES 34 TOCANTINS RIVER BASIN AS THE FUTURE OF THE AMAZON? 48 DEFORESTATION SCENARIOS IN THE AREA OF INFLUENCE OF 50 THE TAPAJÓS HYDROPOWER COMPLEX DEFORESTATION FRONTS AND TRENDS IN THE AMAZON 56 PROTECTED ECOLOGICAL REPRESENTATION IN THE AMAZON AND THE ‘AQUASCAPES’ 76 TAPAJÓS: INTEGRATED PLANNING FOR BIODIVERSITY CONSERVATION 78 BRAZILIAN ENERGY POLICY AND THE MANAGEMENT OF 92 AMAZON FRESHWATER ECOSYSTEMS WWF LIVING AMAZON INTEGRATED APPROACHES FOR A MORE 114 SUSTAINABLE DEVELOPMENT IN THE PAN-AMAZON Amazon forest, Madre de Dios, Peru. Foreword WWF launched its Living Amazon the importance of hydropower, both as a concrete threat to the Amazon and the FOREWORD Initiative, one of nine Global local communities, including indigenous peoples, and as a means of enabling Initiatives of the WWF Network, in development in the region. Charting the correct path requires evidence-based, 2008. Since 2013 we have pursued respectful, sustainable, integrated approaches. a focused approach to dealing with regional and transboundary issues related to protected areas and indigenous Therefore, in this State of the Amazon report, we include some contributions from territories, hydropower, and deforestation, complementing the national and the technical discussions as sidebar articles, including some presented for the local work of the offices and organizations of the WWF Network. first time here: a summary of Deforestation scenarios in the area of influence of the Tapajós Hydropower Complex, a study developed by WWF Living Amazon As part of our approach, WWF Living Amazon Initiative developed the State Initiative, WWF Brazil and the Amazon Environmental Research Institute of the Amazon report series, which describes the key conservation goals (“IPAM” is the Portuguese acronym); and Tapajós: integrated planning for and issues of sustainable development on a Pan-Amazon scale and presents biodiversity conservation, which describes the conservation part of an integrated challenges and examples from both national and local perspectives. approach with energy authorities. Also included is a summary of the WWF Pan- Amazon view on the requirements for greener hydropower development. In November 2014, we presented the first report, State of the Amazon: Ecological Representation, Protected Areas and Indigenous Territories, at The Amazon is under threat. We usually know it due to the importance of its the IUCN World Parks Congress in Australia. forests and the immense volumes of deforestation each year. Brazil’s efforts to curb deforestation — and consequently reduce carbon emissions — are among the WWF Living Amazon Initiative is pleased to present the newest report in best in the world. Yet we tend to forget the Amazon rivers, which are also crucially the series, State of the Amazon: Freshwater Connectivity and Ecosystem important. Terrestrial and aquatic ecosystems are mutually dependent in terms Health, which provides a comprehensive assessment of the current state of of connectivity and therefore affect the region’s longer-term ecological stability. Amazon freshwater ecosystems and highlights the importance of hydrological Scientific research proves that interdependence within the Amazon is crucial to connectivity and land-water interactions in maintaining the ecological stability in the region’s ecological functioning and that the Amazon is vital to both functions that support water, food and energy security. the continent and the world in terms of ecosystem services the region provides. Prominent researchers wrote
Recommended publications
  • Freshwater Ecosystems and Biodiversity
    Network of Conservation Educators & Practitioners Freshwater Ecosystems and Biodiversity Author(s): Nathaniel P. Hitt, Lisa K. Bonneau, Kunjuraman V. Jayachandran, and Michael P. Marchetti Source: Lessons in Conservation, Vol. 5, pp. 5-16 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2015, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 5 Freshwater Ecosystems and Biodiversity Nathaniel P. Hitt1, Lisa K. Bonneau2, Kunjuraman V. Jayachandran3, and Michael P. Marchetti4 1U.S. Geological Survey, Leetown Science Center, USA, 2Metropolitan Community College-Blue River, USA, 3Kerala Agricultural University, India, 4School of Science, St.
    [Show full text]
  • A Draft Genome of the Striped Catfish, Pangasianodon Hypophthalmus, for Comparative Analysis of Genes Relevant to Development An
    Kim et al. BMC Genomics (2018) 19:733 https://doi.org/10.1186/s12864-018-5079-x RESEARCHARTICLE Open Access A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement Oanh T. P. Kim1*† , Phuong T. Nguyen1†, Eiichi Shoguchi2†, Kanako Hisata2, Thuy T. B. Vo1, Jun Inoue2, Chuya Shinzato2,4, Binh T. N. Le1, Koki Nishitsuji2, Miyuki Kanda3, Vu H. Nguyen1, Hai V. Nong1 and Noriyuki Satoh2* Abstract Background: The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. Toacquiregenomesequencedataasausefulresourcefor marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. Results: Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes.
    [Show full text]
  • Archaeological Perspective of the Bananal Island, Brazil
    Archaeological Perspective of the Bananal Island, Brazil Julio Cezar Rubin De Rubin∗y1, Rosicl´erTheodoro Da Silva , Maira Barberi3,2, and Joanne Ester Ribeiro Freitas 1PUC Goi´as(Goi´as){ R. 235, 722 - Setor Leste Universit´ario,Goi^ania- GO, 74605-050, Br´esil 3Julio Cezar Rubin de Rubin (JCRR) { Av. Universit´aria1440 Setor Universit´arioGoi^aniaGO, Br´esil 2Rosicler Theodoro da Silva (RTS) { Av. University´aria1440 Setor Universit´arioGoi^aniaGoi´as,Br´esil R´esum´e The archaeology of the Brazilian Central Plateau presents little information regarding the occupation of the area in the late Pleistocene and early Holocene. We highlight the re- search carried out in Santa Elina, Abrigo-do-Sol and Serran´opolis. Some areas present great potential for archaeological research in this period based on geology, geomorphology and the presence of archaeological sites, among them the Quaternary Fluvial Basin of the Ba- nanal (QFBB), the intracratonic basin that forms part of the Araguaia river basin (medium Araguaia) , resulting from denudational processes and covering an area of approximately 106,000km2. In the north of the basin is the Bananal Island, which occupies an area of 20,000 km2 (approximately twice the area of the Republic of Cyprus) encompassing the Araguaia National Park and the Araguaia Indigenous Area. In the BFQB, there are deposi- tional units inserted in the Middle Pleistocene (240,000 +/- 29,000 and 159,600 +/- 18,542 years BP), in the Upper Pleistocene (121,000 +/- 15,000 and 17,200 +/- 2,300 years BP) and in the Holocene (9,800 +/- 1,100 years BP). These units present records of paleohydro- logical and paleoclimatic changes.
    [Show full text]
  • Ecosystem Services Generated by Fish Populations
    AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa­ ter (Nelson, 1994). Global capture fisheries har­ Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997).
    [Show full text]
  • Fact Sheet on Health and Biodiversity
    Living in harmony with nature Health and Biodiversity We rely on biodiversity to stay healthy. Biodiversity sustains our food supply, is a source of medicines, and supports the provision of clean air and fresh water while also contributing to economic development, cultural and spiritual enrichment. It is now also widely recognized that biodiversity is affected by climate change, with negative consequences for human well-being, but biodiversity, through the ecosystem services it supports, also makes an important contribution to both climate change mitigation and adaptation. As all people require freedom from illness as well as social, emotional, physical, spiritual and cultural well-being, we cannot have healthy societies without biodiversity. Changes to biodiversity can have severe and unpredictable effects on the health of all living things, including people. Clearing new land, for example, can bring people into closer contact with wildlife that may transmit their diseases to humans and also promote the spread of disease from humans to animals. It may also reduce populations of predators that hold disease-carrying organisms in check. In addition, clearing of land may bring about the loss of plants and other organisms useful in medical research or that may contain substances used as medicines. People in developing countries face particularly heavy health burdens from a loss of biodiversity, with impacts on food supply and quality, medicines, and cultural and religious values. It has been estimated that approximately 80% of the world’s population from developing countries rely mainly on traditional medicines derived from plants and that 25% of prescriptions dispensed in United States pharmacies contained plant extracts or active ingredients derived from plants.
    [Show full text]
  • Abstract Book
    Welcome to the Ornithological Congress of the Americas! Puerto Iguazú, Misiones, Argentina, from 8–11 August, 2017 Puerto Iguazú is located in the heart of the interior Atlantic Forest and is the portal to the Iguazú Falls, one of the world’s Seven Natural Wonders and a UNESCO World Heritage Site. The area surrounding Puerto Iguazú, the province of Misiones and neighboring regions of Paraguay and Brazil offers many scenic attractions and natural areas such as Iguazú National Park, and provides unique opportunities for birdwatching. Over 500 species have been recorded, including many Atlantic Forest endemics like the Blue Manakin (Chiroxiphia caudata), the emblem of our congress. This is the first meeting collaboratively organized by the Association of Field Ornithologists, Sociedade Brasileira de Ornitologia and Aves Argentinas, and promises to be an outstanding professional experience for both students and researchers. The congress will feature workshops, symposia, over 400 scientific presentations, 7 internationally renowned plenary speakers, and a celebration of 100 years of Aves Argentinas! Enjoy the book of abstracts! ORGANIZING COMMITTEE CHAIR: Valentina Ferretti, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA- CONICET) and Association of Field Ornithologists (AFO) Andrés Bosso, Administración de Parques Nacionales (Ministerio de Ambiente y Desarrollo Sustentable) Reed Bowman, Archbold Biological Station and Association of Field Ornithologists (AFO) Gustavo Sebastián Cabanne, División Ornitología, Museo Argentino
    [Show full text]
  • Efeitos Das Mudanças De Uso Da Terra No Regime Hidrológico De Bacias De Grande Escala
    Universidade Federal do Rio Grande do Sul Instituto de Pesquisas Hidráulicas Pós-Graduação em Recursos Hídricos e Saneamento Ambiental Efeitos das mudanças de uso da terra no regime hidrológico de bacias de grande escala Débora Missio Bayer Tese de Doutorado Porto Alegre - RS Fevereiro de 2014 Universidade Federal do Rio Grande do Sul Instituto de Pesquisas Hidráulicas Débora Missio Bayer Efeitos das mudanças de uso da terra no regime hidrológico de bacias de grande escala Trabalho apresentado ao Programa de Pós-Graduação em Recursos Hídricos e Saneamento Ambiental do Instituto de Pesquisas Hidráulicas da Universidade Federal do Rio Grande do Sul como requisito para obtenção do grau de Doutor em Recursos Hídricos e Saneamento Ambiental. Orientador: Prof. Dr. Walter Collischonn Porto Alegre - RS Fevereiro de 2014 Agradecimentos Inicialmente gostaria de agradecer ao professor Walter Collischonn, pela orientação, pelos ensinamentos, pela disponibilidade e, principalmente, por sua contagiante empolgação em relação a fazer pesquisa e ciência. Gostaria de agradecer aos membros da banca, professores Eduardo Mario Mendiondo, Anderson Luís Ruhoff e André Luiz Lopes da Silveira, pelas contribuições e sugestões ao trabalho. Em especial, gostaria de agradecer ao também colega e amigo Anderson, que além de contribuir como membro da banca, me auxiliou durante várias etapas do trabalho. Sou grata à Universidade Federal do Rio Grande do Sul, onde desenvolvi o trabalho, no Instituto de Pesquisas Hidráulicas (IPH-UFRGS), no Programa de Pós-Graduação em Re- cursos Hídricos e Saneamento Ambiental, onde incluo todos os professores, pesquisadores, funcionários e colegas. Devo reconhecer o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela bolsa de doutorado, sem a qual não poderia ter desenvolvido a pesquisa com dedicação exclusiva.
    [Show full text]
  • Amazon Alive: a Decade of Discoveries 1999-2009
    Amazon Alive! A decade of discovery 1999-2009 The Amazon is the planet’s largest rainforest and river basin. It supports countless thousands of species, as well as 30 million people. © Brent Stirton / Getty Images / WWF-UK © Brent Stirton / Getty Images The Amazon is the largest rainforest on Earth. It’s famed for its unrivalled biological diversity, with wildlife that includes jaguars, river dolphins, manatees, giant otters, capybaras, harpy eagles, anacondas and piranhas. The many unique habitats in this globally significant region conceal a wealth of hidden species, which scientists continue to discover at an incredible rate. Between 1999 and 2009, at least 1,200 new species of plants and vertebrates have been discovered in the Amazon biome (see page 6 for a map showing the extent of the region that this spans). The new species include 637 plants, 257 fish, 216 amphibians, 55 reptiles, 16 birds and 39 mammals. In addition, thousands of new invertebrate species have been uncovered. Owing to the sheer number of the latter, these are not covered in detail by this report. This report has tried to be comprehensive in its listing of new plants and vertebrates described from the Amazon biome in the last decade. But for the largest groups of life on Earth, such as invertebrates, such lists do not exist – so the number of new species presented here is no doubt an underestimate. Cover image: Ranitomeya benedicta, new poison frog species © Evan Twomey amazon alive! i a decade of discovery 1999-2009 1 Ahmed Djoghlaf, Executive Secretary, Foreword Convention on Biological Diversity The vital importance of the Amazon rainforest is very basic work on the natural history of the well known.
    [Show full text]
  • Academy of Natural Sciences
    Academy of Natural Sciences The Neotropical Cascudinhos: Systematics and Biogeography of the Otocinclus Catfishes (Siluriformes: Loricariidae) Author(s): Scott A. Schaefer Source: Proceedings of the Academy of Natural Sciences of Philadelphia, Vol. 148 (Oct. 31, 1997), pp. 1-120 Published by: Academy of Natural Sciences Stable URL: http://www.jstor.org/stable/4065046 Accessed: 26-03-2015 15:15 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/4065046?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Academy of Natural Sciences is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the Academy of Natural Sciences of Philadelphia. http://www.jstor.org This content downloaded from 192.134.151.170 on Thu, 26 Mar 2015 15:15:03 UTC All use subject to JSTOR Terms and Conditions PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPIA 148: 1-120. 31 OCTOBER 1997 The Neotropical cascudinhos:Systematics and biogeography of the Otocinclus catfishes (Siluriformes:Loricariidae) SCOTT A. SCHAEFER Department of Ichthyology,American Museumof Natural History, Central Park Westat 79th Street,New York, NY 10024-5192, USA ABSTRACT - The genus OtocinclusCope (1872) of the siluriform family Loricariidaeis diagnosed as monophyletic on the basis of shared derived characters of the cranial and hyobranchial skeleton, dorsal gill arch musculature, and gut.
    [Show full text]
  • Assessing Ecosystem Health D.J
    REVIEWS Assessing ecosystem health D.J. Rapport, R. Costanza and A.J. McMichael here is now abundant evi- Evaluating ecosystem health in relation to health in terms of ‘system organiz- dence that many human- the ecological, economic and human ation, resilience and vigor, as well dominated ecosystems, in- health spheres requires integrating human as the absence of signs of ecosys- Tcluding various biophysical values with biophysical processes, an tem distress24. The definition also systems at regional and global lev- integration that has been explicitly includes the presence of essential els, have become highly stressed avoided by conventional science. The field functions and key attributes that and dysfunctional1. The ‘services’ is advancing with the articulation of the sustain life systems (Box 1). provided by these ecosystems are linkages between human activity, regional A healthy ecosystem is defined extremely important to human wel- and global environmental change, as being ‘stable and sustainable’; fare2–5. As stressed ecosystems reduction in ecological services and the maintaining its organization and have become highly degraded1,6–9, consequences for human health, autonomy over time and its re- they have also become incapable economic opportunity and human silience to stress24. Assessment of of supplying services to the same communities. Increasing our these properties in large-scale sys- level as in the past5,10. The ca- understanding of these interactions will tems through specific indicators pacity of the environment to sus- involve more active collaboration between of resilience, organization and tain economic activity4,10 and hu- the ecological, social and health vigor has been attempted for the man health11–15 is, therefore, being sciences.
    [Show full text]
  • Parques Nacionais
    National Parks Brazil BrasiParques Nacionails Brasil Parques Nacionais 2 3 4 5 National Parks Brazil BrasiParques Nacionails 6 7 O Brasil em sua imensidão abriga hoje 69 parques nacionais Brazil in its immensity today houses 69 national parks located situados nas cinco macro-regiões, protegendo no Norte áreas de in the five macro-regions, protecting the northern areas of florestas virgens e praticamente intocadas pelo homem, dunas e virgin forests – virtually untouched by man, dunes and rock pinturas rupestres no Nordeste, a exuberância de Mata Atlântica paintings in the Northeast, the exuberance of the Southeast no Sudeste, os Campos Gerais no Sul e uma flora e fauna do Atlantic Forest, Campos Gerais in the South and the exuberant exuberante do Cerrado no Centro-Oeste. Através desta publica- flora and fauna of the Cerrado in the Midwest. Through this ção a Localiza disponibiliza mais uma vez aos seus clientes e publication, Localiza makes available once more to its clients leitores a possibilidade de descoberta de exemplos bem suce- and readers the chance of discovering successful examples didos de manutenção da riqueza natural, legando às próximas of the maintenance of natural wealth, bequeathing to future gerações áreas de rara beleza. Juntas, elas compõem hoje um generations areas of outstanding beauty. Together they rico mosaico de preservação de nossa inigualável biodiversida- compose today a rich mosaic of conservation of our unique de, de nossa história e também nossa cultura. biodiversity, our history and our culture. Apoio Patrocínio Realização 8 9 Em 1876 o engenheiro abolicionista negro André Rebouças, foi precursor ao idealizar que o Brasil In 1876, the abolitionist engineer André Rebouças was a precursor when he idealized that Brazil destinasse parte de seu território para a criação de áreas protegidas com o intuito de salvaguardar would separate part of its territory to create protected areas with the intention to safeguard in a de forma sistemática, legal e organizada, aspectos importantes de nossos ecossistemas regionais.
    [Show full text]
  • Global Forest Resources Assessment (FRA) 2020 Brazil
    Report Brazil Rome, 2020 FRA 2020 report, Brazil FAO has been monitoring the world's forests at 5 to 10 year intervals since 1946. The Global Forest Resources Assessments (FRA) are now produced every five years in an attempt to provide a consistent approach to describing the world's forests and how they are changing. The FRA is a country-driven process and the assessments are based on reports prepared by officially nominated National Correspondents. If a report is not available, the FRA Secretariat prepares a desk study using earlier reports, existing information and/or remote sensing based analysis. This document was generated automatically using the report made available as a contribution to the FAO Global Forest Resources Assessment 2020, and submitted to FAO as an official government document. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO cannot be held responsible for any use made of the information contained in this document. 2 FRA 2020 report, Brazil TABLE OF CONTENTS Introduction 1. Forest extent, characteristics and changes 2. Forest growing stock, biomass and carbon 3. Forest designation and management 4. Forest ownership and management rights 5. Forest disturbances 6. Forest policy and legislation 7. Employment, education and NWFP 8. Sustainable Development Goal 15 3 FRA 2020 report, Brazil Introduction Report preparation and contact persons The present report was prepared by the following person(s) Name Role Email Tables Ana Laura Cerqueira Trindade Collaborator ana.trindade@florestal.gov.br All Humberto Navarro de Mesquita Junior Collaborator humberto.mesquita-junior@florestal.gov.br All Joberto Veloso de Freitas National correspondent joberto.freitas@florestal.gov.br All Introductory text Brazil holds the world’s second largest forest area and the importance of its natural forests has recognized importance at the national and global levels, both due to its extension and its associated values, such as biodiversity conservation.
    [Show full text]