Handwritten Optical Music Recognition Phd Thesis Proposal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving Optical Music Recognition by Combining Outputs from Multiple Sources
IMPROVING OPTICAL MUSIC RECOGNITION BY COMBINING OUTPUTS FROM MULTIPLE SOURCES Victor Padilla Alex McLean Alan Marsden Kia Ng Lancaster University University of Leeds Lancaster University University of Leeds victor.padilla. a.mclean@ a.marsden@ k.c.ng@ [email protected] leeds.ac.uk lancaster.ac.uk leeds.ac.uk ABSTRACT in the Lilypond format, claims to contain 1904 pieces though some of these also are not full pieces. The Current software for Optical Music Recognition (OMR) Musescore collection of scores in MusicXML gives no produces outputs with too many errors that render it an figures of its contents, but it is not clearly organised and unrealistic option for the production of a large corpus of cursory browsing shows that a significant proportion of symbolic music files. In this paper, we propose a system the material is not useful for musical scholarship. MIDI which applies image pre-processing techniques to scans data is available in larger quantities but usually of uncer- of scores and combines the outputs of different commer- tain provenance and reliability. cial OMR programs when applied to images of different The creation of accurate files in symbolic formats such scores of the same piece of music. As a result of this pro- as MusicXML [11] is time-consuming (though we have cedure, the combined output has around 50% fewer errors not been able to find any firm data on how time- when compared to the output of any one OMR program. consuming). One potential solution to this is to use Opti- Image pre-processing splits scores into separate move- cal Music Recognition (OMR) software to generate sym- ments and sections and removes ossia staves which con- bolic data such as MusicXML from score images. -
MOLA Guidelines for Music Preparation
3 MOLA Guidelines for Music Preparation Foreword These guidelines for the preparation of music scores and parts are the result of many hours of discussion regarding the creation and layout of performance material that has come through our libraries. We realize that each music publisher has its own set of guidelines for music engraving. For new or self-published composers or arrangers, we would like to express our thoughts regarding the preparation of performance materials. Using notation so!ware music publishers and professional composers and arrangers are creating scores and parts that are as functional and beautiful as traditionally engraved music. " .pdf (portable document format) is the suggested final file format as it is independent of application so!ware, hardware, and operating system. "ll ma%or notation so!ware has the option to save a file in this format. "s digital storage and distribution of music data files becomes more common, there is the danger that the librarian will be obliged to assume the role of music publisher, expected to print, duplicate, and bind all of the sheet music. &ot all libraries have the facilities, sta', or time to accommodate these pro%ects, and while librarians can advise on the format and layout of printed music, they should not be expected to act as a surrogate publisher. The ma%ority of printed music is now produced using one of the established music notation so!ware programs. (ome of the guidelines that follow may well be implemented in such programs but the so!ware user, as well as anyone producing material by hand, will still find them beneficial. -
Musical Notation Codes Index
Music Notation - www.music-notation.info - Copyright 1997-2019, Gerd Castan Musical notation codes Index xml ascii binary 1. MidiXML 1. PDF used as music notation 1. General information format 2. Apple GarageBand Format 2. MIDI (.band) 2. DARMS 3. QuickScore Elite file format 3. SMDL 3. GUIDO Music Notation (.qsd) Language 4. MPEG4-SMR 4. WAV audio file format (.wav) 4. abc 5. MNML - The Musical Notation 5. MP3 audio file format (.mp3) Markup Language 5. MusiXTeX, MusicTeX, MuTeX... 6. WMA audio file format (.wma) 6. MusicML 6. **kern (.krn) 7. MusicWrite file format (.mwk) 7. MHTML 7. **Hildegard 8. Overture file format (.ove) 8. MML: Music Markup Language 8. **koto 9. ScoreWriter file format (.scw) 9. Theta: Tonal Harmony 9. **bol Exploration and Tutorial Assistent 10. Copyist file format (.CP6 and 10. Musedata format (.md) .CP4) 10. ScoreML 11. LilyPond 11. Rich MIDI Tablature format - 11. JScoreML RMTF 12. Philip's Music Writer (PMW) 12. eXtensible Score Language 12. Creative Music File Format (XScore) 13. TexTab 13. Sibelius Plugin Interface 13. MusiXML: My own format 14. Mup music publication program 14. Finale Plugin Interface 14. MusicXML (.mxl, .xml) 15. NoteEdit 15. Internal format of Finale (.mus) 15. MusiqueXML 16. Liszt: The SharpEye OMR 16. XMF - eXtensible Music 16. GUIDO XML engine output file format Format 17. WEDELMUSIC 17. Drum Tab 17. NIFF 18. ChordML 18. Enigma Transportable Format 18. Internal format of Capella (ETF) (.cap) 19. ChordQL 19. CMN: Common Music 19. SASL: Simple Audio Score 20. NeumesXML Notation Language 21. MEI 20. OMNL: Open Music Notation 20. -
10 Steps to Producing Better Materials
10 STEPS TO PRODUCING BETTER MATERIALS If you are a composer who prepares your own parts, it’s pretty likely you are using computer software to typeset your music. The two most commonly used programs are Sibelius and Finale. I would like to offer some tips on how to prepare materials that are elegant and readable for your performers, so you won’t receive the dreaded call from the orchestra librarian “there are some serious problems with your parts.” 1. Proofread Your Score It may seem self evident, but I seldom receive a score from a composer that has been professionally proofread. Don’t trust the playback features of your software; they are helpful tools, but they can’t substitute for careful visual examination of the music. Be sure to print out the final score and carefully go through it. Proofreading onscreen is like scuba diving for treasure without a light; it’s pretty hit or miss what you will find. Pay particular attention to the extremes of the page and/or system (the end of one system, the start of the next). Be organized, and don’t try to read the music and imagine it in your head. Instead, try to look at the musical details and check everything for accuracy. Check items for continuity. If it says pizz., did you remember to put in arco? If the trumpet is playing with a harmon mute on page 10 and you never say senza sord., it will be that way for the rest of your piece, or the player will raise their hand in rehearsal and waste valuable time asking “do I ever remove this mute”? 2. -
Proposal to Encode Mediæval East-Slavic Musical Notation in Unicode
Proposal to Encode Mediæval East-Slavic Musical Notation in Unicode Aleksandr Andreev Yuri Shardt Nikita Simmons PONOMAR PROJECT Abstract A proposal to encode eleven additional characters in the Musical Symbols block of Unicode required for support of mediæval East-Slavic (Kievan) Music Notation. 1 Introduction East Slavic musical notation, also known as Kievan, Synodal, or “square” music notation is a form of linear musical notation found predominantly in religious chant books of the Russian Orthodox Church and the Carpatho-Russian jurisdictions of Orthodoxy and Eastern-Rite Catholicism. e notation originated in present-day Ukraine in the very late 1500’s (in the monumental Irmologion published by the Supraśl Monastery), and is derived from Renaissance-era musical forms used in Poland. Following the political union of Ukraine and Muscovite Russia in the 1660’s, this notational form became popular in Moscow and eventually replaced Znamenny neumatic notation in the chant books of the Russian Orthodox Church. e first published musical chant books using Kievan notation were issued in 1772, and, though Western musical notation (what is referred to as Common Music Notation [CMN]) was introduced in Russia in the 1700’s, Kievan notation continued to be used. As late as the early 1900’s, the publishing house of the Holy Synod released nearly the entire corpus of chant books in Kievan notation. e Prazdniki and Obihod chant books from this edition were reprinted in Russia in 2004; the compendium Sputnik Psalomschika (e Precentor’s Companion) was reprinted by Holy Trinity Monastery in Jordanville, NY, in 2012. ese books may be found in the choir los of many monasteries and parishes today. -
Efficient Algorithms for Music Engraving, Focusing on Correctness
Efficient Algorithms For Music Engraving, Focusing On Correctness Jeron Lau, Scott Kerlin Mathematics, Statistics and Computer Science Department Augsburg University 2211 Riverside Ave, Minneapolis, MN 55454 [email protected], [email protected] Abstract Designing a software algorithm for music engraving is a difficult problem. For the written score to be readable for instrumentalists and singers, the music must be presented in a way that is easy to follow. Currently existing music notation software often makes a compromise between a correctly engraved score and efficient algorithms. This paper covers better algorithms to use to properly layout notes, and other symbols within a measure. The algorithms do not become slower with larger scores, and all run at an amortized O(n), where n is the number of notes in that section of the score. These algorithms are developed with an open source software library for handling the music layout and animations for music software applications in mind. The techniques explored include using custom data structures that work well for this purpose. 1 Definitions This section of the paper describes music notation terms. 1.1 Stave The stave is made up of a series of horizontal lines, typically five. Notes are placed on the stave. Figure 1: The common 5-line stave (Musical notation samples within this paper are generated by the engraver program developed during this research project) 1.2 Stave Space A stave space is the space between two horizontal lines on the stave [1]. The stave space is a unit used in a similar manner to the em unit used in typography. -
Using Smartscore 2.Pdf
Using SmartScore Scanning Music Be sure you have the necessary scanner drivers installed before attempting to scan from inside SmartScore. Most scanners come with software that enable programs such as SmartScore to control them. TWAIN drivers and/or Mac plug-ins are normally included in the software packaged with most scanners. It may be necessary for certain Mac users to perform a “Custom > TWAIN” installation from the CD accompanying your scan- ner; depending on the manufacturer. NOTE: Scanner drivers are often updated by scanner manufacturers and posted on their web sites. If problems occur during scanning, it is always a good idea to check the Internet for updated scanner drivers before calling Musitek Technical Support. Mac Users: Skip the next section. Turn to “Scanning in Macintosh” on page 6. Scanning in Windows: Using the SmartScore Scanning Interface a. Push the Scan button in the Navigator or in the Main Toolbar. Figure 1: Scan Button b. If there is no response, go to File > Scan Music > Select Scanner and choose appropriate TWAIN driver. If you do not see anything listed in the Select Scanner window, your drivers are probably not installed. Install or replace TWAIN driver from scanner CD or from “Driver Download” area of scanner manufacturer’s website. c. If the scanner still does not operate properly, go to “Choosing an alternative scanning interface” on page 5. USING SmartScore 1 Help > Using SmartScore Your scanner should immediately begin to operate with Scan or Acquire. A low-resolution pre-scan should soon appear in the Preview window. FIGURE 2: SmartScore scanning interface d. -
November 2.0 EN.Pages
Over 1000 Symbols More Beautiful than Ever SMuFL Compliant Advanced Support in Finale, Sibelius & LilyPond DocumentationAn Introduction © Robert Piéchaud 2015 v. 2.0.1 published by www.klemm-music.de — November 2.0 Documentation — Summary Foreword .........................................................................................................................3 November 2.0 Character Map .........................................................................................4 Clefs ............................................................................................................................5 Noteheads & Individual Notes ...................................................................................13 Noteflags ...................................................................................................................42 Rests ..........................................................................................................................47 Accidentals (Standard) ...............................................................................................51 Microtonal & Non-Standard Accidentals ....................................................................56 Articulations ..............................................................................................................72 Instrument Techniques ...............................................................................................83 Fermatas & Breath Marks .........................................................................................121 -
Sight Reading Complete for Drummers
!!! Free Preview !!! Sight Reading Complete for Drummers Volume 1 of 3 By Mike Prestwood An exploration of rhythm, notation, technique, and musicianship ISBN # 0-9760928-0-8 Published By Exclusively Distributed By Prestwood Publications Play-Drums.com www.prestwoodpublications.com www.play -drums.com Sight Reading Complete for Drummers © 1984, 2004 Mike Prestwood. All Rights Reserved. First Printing, September 2004 No part of this book may be photocopied or reproduced in any way without permission. Dedication I dedicate this method series to my first drum instructor Joe Santoro. Joe is a brilliant instructor and an exceptional percussionist. With his guidance, I progressed quickly and built a foundation for a lifetime of drumming fueled by his encouragement and enthusiasm. Cover Design: Patrick Ramos Cover Photography: Michelle Walker Music Engraving: Mike Prestwood Special thanks to: James LaRheir and Leslie Prestwood Contents Introduction.................................................................................1 Lesson 1: Technique .................................................................7 Lesson 2: Tempo and Beat Grouping.....................................9 Lesson 3: Whole, Half, Quarter ..............................................11 Lesson 4: Snare and Bass ......................................................13 Lesson 5: 2/4 and 3/4 Time.....................................................15 Lesson 6: 8th Notes .................................................................17 Lesson 7: 16th Notes...............................................................20 -
Jean-Pierre Coulon
Repository of music-notation mistakes or Essay on the true art of music engraving Jean-Pierre Coulon coulon@ ob s - ni c.fe r April 4, 2011 intended for: users of music-typesetting software packages, • developers of such packages, • traditional music-engravers, • sheet-music collectors, • those keen on problems of semantics, semiology, philology , etc. • NB: These examples are certainly musically worthless: do not read them with your instrument :-) To limit myself to the essential, and lacking sufficient expertise, I do not deal with any of these neighboring, exciting topics: music theory, harmony, composition, etc. • comparative test of various typesetting packages, • how to interpret the quoted symbols according to epochs, • copyright issues, • percussion notation, and plucked-string instrument tablatures, • very-early-music notation, and avant-garde music notation. I• apologize to readers of some countries for having adhered to the U.S. terminology 1 General issues 1.1 When simultaneous notes are present on the same staff, two notations are posssible: chord notation, or multiple-voice, a.k.a. polyphonic notation. ĽĽ ĽĽ G ˇ ˇˇ ˇˇ ˇˇ G ˇ> ˇ ˇˇ ˇ ĽĽ Of course, if parts have distinct rythms, the polyphonic notation is required. 1 from here: This side: incorrect. This side: correct. 1.2 Do your best to place page-turns at places acceptable for the musician, otherwise he will either require a “page-turner”, or labor to arrange chunks of photocopies. Since modern musical scores are smaller than before, this demands more efforts from the music engraver. The actual print size, i.e. omitting margins, of most scores from former epochs, almost matched the usual format of most of modern scores including the margins. -
Improved Optical Music Recognition (OMR)
Improved Optical Music Recognition (OMR) Justin Greet Stanford University [email protected] Abstract same index in S. Observe that the order of the notes is implicitly mea- This project focuses on identifying and ordering the sured. Any note missing from the output, out of place, or notes and rests in a given measure of sheet music using a erroneously added heavily penalizes the percentage. More novel approach involving a Convolutional Neural Network qualitatively, we can render the output of the algorithm as (CNN). Past efforts in the field of Optical Music Recogni- sheet music and visually check how it compares to the input tion (OMR) have not taken advantage of neural networks. measure. The best architecture we developed involves feeding pro- Multiple commercial OMR products exist and their ef- posals of regions containing notes or rests to a CNN then fectiveness has been studied to be imperfect enough to pre- removing conflicts in regions identifying the same symbol. clude many practical applications [4, 20]. We run the test We compare our results with a commercial OMR product images through one of them (SmartScore [12]) and use the and achieve similar results. evaluation criteria described above to serve as a benchmark for the proposed algorithm. 1. Introduction 2. Related Work Optical Music Recognition (OMR) is the problem of The topic of OMR is heavily researched. The research converting a scanned image of sheet music into a symbolic can be broadly broken up into three categories: evaluation representation like MusicXML [9] or MIDI. There are many of existing methods, discovery of novel solutions for spe- obvious practical applications for such a solution, such as cific parts of OMR, and classical approaches to OMR. -
Computational Analysis of Audio Recordings and Music Scores for the Description and Discovery of Ottoman-Turkish Makam Music
Computational Analysis of Audio Recordings and Music Scores for the Description and Discovery of Ottoman-Turkish Makam Music Sertan Şentürk TESI DOCTORAL UPF / 2016 Director de la tesi Dr. Xavier Serra Casals Music Technology Group Department of Information and Communication Technologies Copyright © 2016 by Sertan Şentürk http://compmusic.upf.edu/senturk2016thesis http://www.sertansenturk.com/phd-thesis Dissertation submitted to the Department of Information and Com- munication Technologies of Universitat Pompeu Fabra in partial fulfillment of the requirements for the degree of DOCTOR PER LA UNIVERSITAT POMPEU FABRA, with the mention of European Doctor. Licensed under Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 You are free to share – to copy and redistribute the material in any medium or format under the following conditions: • Attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. • Non-commercial – You may not use the material for com- mercial purposes. • No Derivative Works – If you remix, transform, or build upon the material, you may not distribute the modified ma- terial. Music Technology Group (http://mtg.upf.edu/), Department of Informa- tion and Communication Technologies (http://www.upf.edu/etic), Univer- sitat Pompeu Fabra (http://www.upf.edu), Barcelona, Spain The doctoral defense was held on .................. 2017 at Universitat Pompeu Fabra and scored as ........................................................... Dr. Xavier Serra Casals Thesis Supervisor Universitat Pompeu Fabra (UPF), Barcelona, Spain Dr. Gerhard Widmer Thesis Committee Member Johannes Kepler University, Linz, Austria Dr.