Reading in Fall 2010'S Inside Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Thermal Behavior in Conformal Boundary States
Prepared for submission to JHEP Non-Thermal Behavior in Conformal Boundary States Kevin Kuns and Donald Marolf Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: [email protected], [email protected] Abstract: Cardy has recently observed that certain carefully tuned states of 1+1 CFTs on a timelike strip are periodic with period set by the light-crossing time. The states in question are defined by Euclidean time evolution of conformal boundary states associated with the particular boundary conditions imposed on the edges of the strip. We explain this behavior, and the associated lack of thermalization, by showing that such states are Lorentz-signature conformal transformations of the strip ground state. Taking the long- strip limit implies that states used to model thermalization on the Minkowski plane admit non-thermal conformal extensions beyond future infinity of the Minkowski plane, and thus retain some notion of non-thermal behavior at late times. We also comment on the holo- graphic description of these states. arXiv:1406.4926v2 [cond-mat.stat-mech] 6 Oct 2014 Contents 1 Introduction1 2 Periodicity and Tuned Rectangle States2 2.1 Tuned Rectangle States from Conformal Transformations2 2.2 One-Point Functions5 3 Conformal Transformations to the Thermal Minkowski Plane9 4 Discussion 12 A Holographic Description 13 1 Introduction The rapid change in a quantum system from a Hamiltonian H0 to a Hamiltonian H is known as a quantum quench. Quantum quenches are of experimental interest since they can be studied in laboratory systems involving ultracold atoms. They are also of theoretical interest as examples of out of equilibrium quantum systems whose thermalization, or lack thereof, can be used as a first step towards understanding thermalization in more general quantum systems. -
A First Law of Entanglement Rates from Holography
A First Law of Entanglement Rates from Holography Andy O'Bannon,1, ∗ Jonas Probst,2, y Ronnie Rodgers,1, z and Christoph F. Uhlemann3, 4, x 1STAG Research Centre, Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, U. K. 2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, U. K. 3Department of Physics, University of Washington, Seattle, WA 98195-1560, USA 4Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA For a perturbation of the state of a Conformal Field Theory (CFT), the response of the entanglement entropy is governed by the so-called “first law" of entanglement entropy, in which the change in entanglement entropy is proportional to the change in energy. Whether such a first law holds for other types of perturbations, such as a change to the CFT La- grangian, remains an open question. We use holography to study the evolution in time t of entanglement entropy for a CFT driven by a t-linear source for a conserved U(1) current or marginal scalar operator. We find that although the usual first law of entanglement entropy may be violated, a first law for the rates of change of entanglement entropy and energy still holds. More generally, we prove that this first law for rates holds in holography for any asymptotically (d + 1)-dimensional Anti-de Sitter metric perturbation whose t dependence first appears at order zd in the Fefferman-Graham expansion about the boundary at z = 0. -
Reading in Fall 2003'S Inside Physics
FFromrom thethe ChairChair available in the fall of 2001. Visits elcome to the first edition of our by prospective students nearly newsletter, created to keep us in doubled the number for the newsletter, created to keep us in previous year, and 33 new Wclose touch with our alumni and graduate students appeared in the friends. We’d like to hear your reaction: fall of 2001. We were especially friends. We’d like to hear your reaction: pleased that 30% of the entering what’s satisfying, what’s not, what’s class were women. I hope this is missing. Please let us know. no “fluke” and that we continue missing. Please let us know. to increase the participation of women in physics. The applica- tions for the fall of 2002 number Jim Allen over 500 and we look forward to Department Chair enrolling another strong class. OUR FUTURE Three new faculty joined our als. And Walter himself, the EXCITING TIMES ranks: Crystal Martin, an observa- founding director of the Institute “You can dismiss one Nobel Prize tional astrophysicist from Caltech; for Theoretical Physics, received as a statistical fluke,” Walter Kohn David Stuart, a high energy the 1998 prize in chemistry. remarked, “but a spate of three experimental physicist from Fermi signals something important and Lab; and Dik Bouwmeester from exciting happening at UCSB.” ENDOWED CHAIR Oxford, who works on quantum We are delighted that a chair in The three Nobels reflect UCSB’s optics and experimental quantum experimental physics has been longstanding commitment to information science. We continue endowed by Bruce and Susan excellence in science and engi- to search for new faculty in Worster. -
Quantum Quenches: a Probe of Many-Body Quantum Mechanics
Tata Institute of Fundamental Research Hyderabad Colloquium John Cardy University of California, Berkeley Professor John Cardy is well known for his application of quantum field theory and the renormalization group to condensed matter, especially to critical phenomena in both pure and disordered equilibrium and non-equilibrium systems. In the 1980s he helped develop the theory of conformal invariance and its applications to these problems, ideas which also had an impact in string theory and the physics of black holes. In the 1990s he used conformal invariance to derive many exact results in percolation and related probabilistic problems. More recently Professor Cardy has worked on questions of quantum entanglement and non-equilibrium dynamics in many-body systems. He is a Fellow of the Royal Society, a recipient of the 2000 Dirac Medal of the Institute of Physics, of the 2004 Lars Onsager Prize of the American Physical Society, of the 2010 Boltzmann Medal of the International Union of Pure and Applied Physics, and of the 2011 Dirac Medal and Prize of the International Centre for Theoretical Physics. Professor Cardy has a long-standing association with TIFR, and visited our Mumbai campus in 2007-08 as the Homi Bhabha Chair Professor. Quantum Quenches: a probe of many-body quantum mechanics In a quantum quench, a system is prepared in some state (typically the ground state of an initial hamiltonian) and then evolved coherently with a different hamiltonian, e.g. by instantaneously changing a parameter. Such protocols in many-body systems have recently become experimentally achievable with ultracold atoms. I shall discuss some of the theoretical approaches to this problem, and in particular discuss whether, and in what sense, such systems thermalize. -
Annual 2016-2017
ANNUAL 2016-2017 REPORT UCSB MARINE SCIENCE INSTITUTE | UC SANTA BARBARA Table of Contents Director’s Statement 3 Organizational Charts 5 Administrative Staff 6 Centers and Units 7 Other Projects & Activities 8 Seminars, Workshops, Conferences, and Meetings 9 Coastal Research Center 11 Marine Biotechnology Center 13 Ocean and Coastal Policy Center 20 UC Natural Reserve System 21 Analytical Laboratory 23 Education and Outreach 24 Awards Administered 25 Awards 26 Research Summaries 36 Space 129 Statistical Summary 135 Research Support Summary 136 Statistical Summary 2015-2016 138 Five-Year Research Support Summary 140 Funding Agencies 143 MSI Advisory Committee, 145 Administrative & Technical Staff Principal Investigators 148 2 DIRECTor’s STATEMENT 3 Director’s Statement As we move towards MSI’s 50th anniversary in 2019 the Marine Science Institute our scientists continue on a trajectory of engaging in cutting edge research and of solving pressing problems in ocean science. Our research portfolio continues to diversify with an ever growing set of funders representing a very large array of government agencies, private industry, non-profit foundations and individuals. Discoveries by MSI researchers are revealing wondrous new aspects of ocean systems from new insights into the ecology of coral reefs to the effects of ocean acidification. This new knowledge continues to improve our basic understanding of the seas and the wide range of services that they provide to society. I am proud of the contribution that our scientist make to society’s knowledge as these discoveries continually teach us how to be better stewards of the ocean realm. While ocean discovery is key to our mission, MSI researchers also act on this knowledge to solve pressing issues associated with the constructive use of ocean resources. -
Annual Report Marinemarine Science Science Institute Institute |• UC UC Santa Santa Barbara Barbara 2013 2014
ANNUAL REPORT MarineMarine Science Science Institute Institute |• UC UC Santa Santa Barbara Barbara 2013 2014 ANNUAL REPORT | 2013-2014 1 ANNUAL REPORT | 2013-2014 Table of Contents Director’s Statement 3 Organizational Charts 5 Administrative Staff 6 Centers and Units 7 Other Projects and Activities 8 Seminars, Workshops, Conferences, and Meetings 9 Coastal Research Center 17 EcoInformatics Center 19 Marine Biotechnology Center 21 National Center for Ecological Analysis and Synthesis 23 Ocean and Coastal Policy Center 25 UC Natural Reserve System 26 Analytical Laboratory 28 REEF/Outreach 29 Awards Administered 30 Awards 31 Research Summaries 39 Space 142 Statistical Summary 148 Research Support Summary 149 Statistical Summary 2013-2014 151 Five-Year Research Support Summary 153 Funding Agencies 156 MSI Advisory Committee, 158 Administrative and Technical Staff Principal Investigators 161 2 ANNUAL REPORT | 2013-2014 Director’s Statement 3 ANNUAL REPORT | 2013-2014 Director’s Statement This year marks the 10th anniversary of the opening of the Marine Science Institute’s Marine Science Research Building, a state-of-the-art facility located on the bluff overlooking the Pacific Ocean on the eastern edge of the University of California, Santa Barbara’s campus. It is an inspiring facility and location, and it has taken the hard work of many individuals to make it a reality. At UCSB in the 1980’s and 1990’s, Marine Science facilities could be described as dispersed, inadequate, and not up to the standards of a world class research institution. Long-standing efforts to get a facility approved and built had met with no success. However, things began to change with the identification of a State of California program that provided a financing mechanism for research facilities dedicated to long-term scientific activities. -
ANNUAL REPORT Marine Science Institute UC SANTA BARBARA Table of Contents
2018–2019 ANNUAL REPORT Marine Science Institute UC SANTA BARBARA Table of Contents 3 Mission Statement 4 From the Director Overview 5 Executive Summary 7 10 Organizational Charts Administrative Staff 11 Centers and Units 12 13 MSI Advisory Committee, Administrative & Technical Staff 16 Statistical Summary Research Support Summary 17 Statistical Summary 2018–2019 19 Five-Year Research Support 21 Summary Funding Agencies 22 24 Principal Investigators 30 Postdoctoral Researchers, Graduate and Undergraduate Students 33 Space 39 Other Projects & Activities Coastal Research Center 40 Marine Biotechnology Center 42 Ocean & Coastal Policy Center 52 Analytical Laboratory 54 Education and Outreach 55 56 Awards Administered Awards 57 Research Summaries 66 2 Mission Statement The Marine Science Institute at the University of California, Santa Barbara, is committed to fostering innovative and significant research, to promoting effective stewardship, and to sharing exciting discoveries of the world’s oceans. 3 From the Director 4 Overview The Marine Science Institute (MSI) provides an intellectual and physical environment at UCSB that fosters world-renowned marine research. The institute brings together marine researchers from across the UCSB campus and supports multi-investigator collaborative projects and individual research efforts. The scientific membership at MSI consists of both ladder faculty and professional researchers. In 2018-2019 MSI membership included 25 ladder faculty and 32 professional researchers with 228 additional participants distributed across postdoctoral scholars, graduate students and undergraduates. Beyond research, MSI’s Research Experience and Education Facility (REEF) educates UCSB students and the general public about MSI science. MSI is housed in the marine science research building (MSRB) on the UCSB campus. -
Evaluating Tradeoffs Among Ecosystem Services to Inform Marine Spatial Planning
Evaluating tradeoffs among ecosystem services to inform marine spatial planning Lester, S. E., Costello, C., Halpern, B. S., Gaines, S. D., White, C., & Barth, J. A. (2013). Evaluating tradeoffs among ecosystem services to inform marine spatial planning. Marine Policy, 38, 80-89. doi:10.1016/j.marpol.2012.05.022 10.1016/j.marpol.2012.05.022 Elsevier Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse 1 Title: Evaluating tradeoffs among ecosystem services to inform marine spatial planning 2 3 Sarah E. Lestera, Christopher Costellob, Benjamin S. Halpernc, Steven D. Gainesd, Crow Whitee, 4 John A. Barthf 5 6 a Marine Science Institute and Bren School of Environmental Science & Management, 7 University of California, Santa Barbara, CA 93106-6150, USA. [email protected] 8 b Bren School of Environmental Science & Management, 4410 Bren Hall, University of 9 California, Santa Barbara, CA 93106, USA. [email protected] 10 c National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa 11 Barbara, CA 93101, USA. [email protected] 12 d Bren School of Environmental Science & Management, 4410 Bren Hall, University of 13 California, Santa Barbara, CA 93106, USA. [email protected] 14 e Bren School of Environmental Science & Management, 4410 Bren Hall, University of 15 California, Santa Barbara, CA 93106, USA. [email protected] 16 f College of Oceanic & Atmospheric Sciences, Oregon State University, 104 COAS Admin Bldg, 17 Corvallis, OR 97331, USA. [email protected] 18 19 Corresponding author: 20 Sarah E. Lester 21 Marine Science Institute / Bren School of Environmental Science & Management 22 University of California 23 Santa Barbara, CA 93106-6150, USA 24 Ph: 805.893.5175 25 Fax: 805.893.8062 26 Email: [email protected] 27 28 Running Title: Ecosystem service tradeoffs 1 Ecosystem service tradeoffs 1 Abstract 2 A central challenge for natural resource management is developing rigorous yet practical 3 approaches for balancing the costs and benefits of diverse human uses of ecosystems. -
Flowing Along in Four Dimensions 15 November 2011, by Tammy Plotner
Flowing along in four dimensions 15 November 2011, by Tammy Plotner His speculation is the a-theorem… a multitude of avenues in which quantum fields can be energetically excited (a) is always greater at high energies than at low energies. If this theory is correct, then it likely will explain physics beyond the current model and shed light on any possible unknown particles yet to be revealed by the Large Hadron Collider (LHC) at CERN, Europe's particle physics lab near Geneva, Switzerland. "I'm pleased if the proof turns out to be correct," says Cardy, a theoretical physicist at the University of Oxford, UK. "I'm quite amazed the conjecture I made in 1988 stood up." According to theorists Zohar Komargodski and Adam Schwimmer of the Weizmann Institute of Science in Rehovot, Israel, the proof of Cardy's theories was presented July 2011, and is slowly gaining notoriety among the scientific community as other theoretical physicists take note of his work. The a-theorem could help to explain the theory that describes quarks, fundamental particles seen here in a "I think it's quite likely to be right," says Nathan three-dimensional computer-generated simulation. Seiberg, a theoretical physicist at the Institute of Credit: PASIEKA/SPL Advanced Study in Princeton, New Jersey. The field of quantum theory always stands on shaky ground… it seems that no one can be In 1988, John Cardy asked if there was a c- 100% accurate on their guesses of how particles theorem in four dimensions. At the time, he should behave. -
Enriching the Health of Physics Education
Enriching the Health of Physics Education 2008 AAPT Winter Welcome to Baltimore .............. 3 Meeting Acknowledgments .................... 4 Meeting Information ................. 6 Baltimore, MD Contact Information ................. 6 Bus Schedule ............................ 7 About Baltimore ....................... 8 Special Events ......................... 10 January 19–23 Exhibitors ............................... 12 Baltimore Marriott Award Winners & Plenaries ..... 16 Committee Meetings .............. 23 Waterfront Hotel Meeting at a Glance ............... 24 Workshop Abstracts ................ 28 Commercial Workshops .......... 34 SUNDAY Poster Sessions ......... 38 MONDAY Sessions ................. .40 TUESDAY Sessions .................. 66 WEDNESDAY Sessions ............. 84 Index of Participants ................ 90 Index of Advertisers ................ 92 Donors .................................... 93 Maps ...................................... 94 Future Meetings ...................... 96 American Association of Physics Teachers One Physics Ellipse College Park, MD USA 20740-3845 301-209-3300, fax: 301-209-0845 [email protected], www.aapt.org InterActions Makes Its Official Debut at the 2008 Winter Meeting What Is InterActions? – The people, places, programs and policies defining physics teaching and learning – A glimpse Inside the physics education community openforum Synopsis iAmonitor QandA Focal Point ilearn Insight causeeffect endpoint Inside InterActions – human interest in physics Welcome to Baltimore Welcome to the -
UC Santa Barbara
DIVISION OF STUDENT AFFAIRS UC Santa Barbara UC Santa Barbara Student Affairs Annual Report | 2013-2014 SCHOLARSHIP CITIZENSHIP LEADERSHIP 2 | UCSB STUDENT AFFAIRS ANNUAL REPORT TABLE OF CONTENTS LETTER FROM THE VICE CHANCELLOR ............................................................ 4 HISTORY OF STUDENT AFFAIRS: SCHOLARSHIP, LEADERSHIP, CITIZENSHIP .... 5 STUDENT ASSESSMENT IN ACTION ............................................................... 10 DEPARTMENTS Academic Initiatives ............................................... 12 Office of International Students & Scholars ............ 27 Office of Admissions ............................................... 13 Grants & Development ........................................... 28 Arts & Lectures ....................................................... 14 Office of Judicial Affairs .......................................... 29 Associated Students ............................................... 15 MultiCultural Center ................................................ 30 Campus Learning Assistance Services .................... 16 Orientation Programs .............................................. 31 Career Services ...................................................... 17 Department of Recreation ...................................... 32 Counseling & Psychological Services ..................... 18 Office of the Registrar ............................................. 33 Dean of Students Office ......................................... 19 Storke Student Publications .................................. -
Annual Report of the National Nanotechnology Infrastructure Network
Annual Report of the National Nanotechnology Infrastructure Network 10 month period March 1, 2010 through Dec 31, 2010 “Year 7” Cooperative Agreement: ECS-0335765 March. 2011 Participating Institutions: Arizona State University, Cornell University, Georgia Institute of Technology, Harvard University, Howard University, Pennsylvania State University, Stanford University, University of California at Santa Barbara, University of Colorado, University of Michigan, University of Minnesota, University of Texas at Austin, University of Washington, and Washington University in St. Louis 1 National Nanotechnology Infrastructure Network 2010‐11 Annual Report Executive Summary Introduction: The National Nanotechnology Infrastructure Network (NNIN) is a collective of fourteen university‐based nanotechnology facilities with the mission to enable rapid advancements in nanoscale science, technology and engineering through open and efficient access to advanced processes, equipment, and expertise. Completing its 7th year of operation, NNIN provides a distributed facilities‐ based infrastructure resource that is openly accessible to the nation’s students, scientists and engineers from academe, small and large companies, and national laboratories. It enables the reduction of nanotechnology based ideas to practice by providing the capacity to explore materials, structures, devices and systems through access to tools, training and specialized staff support– all at affordable cost, with minimum administrative barriers and with only a few weeks of preparation following initial contact. NNIN also provides computational resources with an emphasis on advanced scientific computing and modeling at the nanoscale, Figure 1: Institutions of NNIN and the experimental research & particularly in support of experimental efforts, development usage of NNIN during 2010‐11. and in building repositories of trusted critical scientific information, e.g., interatomic and pseudopotentials.