Summer Diet Selection by Snowshoe Hares by Pippa Elizabeth

Total Page:16

File Type:pdf, Size:1020Kb

Summer Diet Selection by Snowshoe Hares by Pippa Elizabeth Summer Diet Selection by Snowshoe Hares by Pippa Elizabeth Seccombe-Hett B.Sc. University of British Columbia, 1996 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Botany) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September 1999 © Pippa Elizabeth Seccombe-Hett, 1999 f In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT The primary objective of this study was to identify the plant species included in the diets of male snowshoe hares (Lepus americanus) during the summer months. Snowshoe hare selection for and against each plant species was assessed by comparing the relative use and availability of each plant species. The secondary objective was to examine several hypotheses of what influenced the selection of those species individually and within an integrated modeling framework. Three hypotheses were examined, i) Hares might select plants with high nutritional content (of energy or protein), ii) Hares might select plants to avoid or minimize deleterious plant secondary compounds (i.e. tannins and alkaloids), iii) Hares might select plants that minimize their risk of predation. The hare diet during the summer consists of five main plant species: Betula glandulosa, Festuca altaica, Lupinus arcticus, Salix spp. and Shepherdia canadensis, although a number of other species were occasionally included. Nutritionally, hares select for plant species with high protein content and avoid toxic effects from secondary compounds by ingesting a diverse diet. Hares are not consistently found associated with any particular vegetation types, although they prefer habitats with both a dense understory and an abundance of preferred food species. Although some support was generated for all of the hypotheses of diet selection, no single hypothesis explained all of the observed patterns of diet selection. A linear programming foraging model combined with optimization techniques was thus used to examine the interactions between the variables. Overall, the model is successful in integrating the conflicting hypotheses of hare foraging. It appears that hares change their diet selection response to conflicting goals such as reproductive condition and risk of predation. The model suggests that the interaction between plant protein and chemical defense compounds are the primary determinants of hare diet. Table of Contents Abstract 11 Table of Contents lv List of Tables v List of Figures wn Acknowledgements VIU Chapter 1 1 Chapter 2 4 Methods 8 Results 21 Discussion ^1 Chapter 3 71 Methods 74 Results 80 Discussion ^7 Chapter 4 102 The diet selection model 104 Results 121 Discussion 1^9 Chapter 5 147 References iv List of Tables Table 2.1 The relative proportion of species available in the hare enclosures 22 Table 2.2 Selection ratios for hares at time 1 29 Table 2.3 Comparison of species selection ratios at timet 32 Table 2.4 Selection ratios for hares at time 2 33 Table 2.5 Comparison of species selection ratios at time 2 34 Table 2.6 Mean crude protein content of plant tissues 37 Table 2.7 Comparison of mean consumed versus mean available plant nutritional properties 43 Table 2.8 Mean gross caloric content of plant tissues 46 Table 2.9 Secondary compounds identified in plant tissues 58 Table 2.10 ANOVA results for protein, energy, secondary compounds in diet selection 59 Table 2.11 Comparison of results from studies of summer diet selection 62 Table 3.1 Mean habitat characteristics on three study sites 81 Table 3.2 Results from correlation of fecal pellet number against habitat variables... 82 Table 3.3 Summary of composite variable analysis 86 Table 3.4 Correlation between composite variables 87 Table 3.5 Mean vegetation characteristics within each cluster on each grid 90 Table 3.6 Results from ad hoc logistic regression to predict cluster membership 94 Table 3.7 Significant results from logistic regression on fecal pellet transects 95 Table 3.8 Correlations between tree cover, Betula glandulosa and Festuca altaica 96. Table 4.1 Parameter definitions for model 107 Table 4.2 Mean plant nutritional characters included in the model 109 Table 4.3 Time related parameters included in the model 114 Table 4.4 Comparison of predicted and observed diets using Belovsky's original model 123 Table 4.5 Summary of constraint equations violated by observed hare diets 136 Table 4.6 Results from sensitivity analysis of model constraint equations 137 Table 4.7 Summary of sensitivity analysis on time costs 138 Table 4.8 Assumptions of the diet selection model 146 vi List of Figures Figure 2.1 Schematic diagram of sampling design within hare enclosure 12 Figure 2.2 Comparison of proportion of plant species consumed versus available within hare enclosures time 1 25 Figure 2.3 Comparison of proportion of plant species consumed versus available within hare enclosures time 2 27 Figure 2.4 Mean crude protein content of leaf tissue 36 Figure 2.5 Standardized selection ratios as a function of protein content time 1 39 Figure 2.6 Mean energy content of plant leaf tissue 44 Figure 2.7 Standardized selection ratios as a function of energy content time 1 48 Figure 2.8 Correlation of protein and energy content of leaf tissues at both times... .50 Figure2.9 Mean fibre content of leaf tissue 52 Figure2.10 Mean water content of leaf tissues 55 Figure3.1 Correlations of fecal pellet number and distance to cover for three study sites 83 Figure3.2 Regression of composite food variables against distance to cover for each study site 88 Figure 4.1 Fecal index of hare daily activity Ill Figure 4.2 Optimization results from new diet selection model at time 1 125 Figure 4.3 Optimization results from new diet selection model at time 2 128 Figure 4.4 Optimization results from new model at time 2. Adjustments applied to secondary compounds of Betula glandulosa and Shepherdia canadensis 131 Figure 4.5 Comparison of time minimized, energy maximized and simultaneous maximization goals with the observed diet 134 vii Acknowledgements This work was funded by NSTP, a graduate fellowship from NSERC and an NSERC operating grant for Dr. Turkington. I would like to thank those who helped me in the field: Patrick Carrier, Sarah Davidson, Leo Frid, Elvira Harms, Chris Lortie, Liz Gillis, Jes Logher, and Chris Wulff but most particularly Katie Breen and Jaroslav Welz who had to suffer me daily. This work could not have been completed without the lab support was provided by Tony Sinclair, Gilles Galzi and Elaine Humphrey. Summer field support came from the Arctic Institute of North America, particularly Jan, Sian and Andy Williams. A special thank you goes to Karen Hodges was supportive and helpful in directing my ideas in the early stages. An enormous thank you to Clive Welham who patiently convinced me that modeling and animal behaviour was not so bad; without his guidance this thesis would not have taken the same direction. A special thank you to Roy who guided me, supported me and patiently dealt with my difficulties in reaching the end of this. Finally I have to thank Matthew Evans who was involved in every step of the way whether he wanted to or not. viii CHAPTER 1 DIET SELECTION IN THE SNOWSHOE HARE CYCLE INTRODUCTION Populations of snowshoe hares (Lepus americanus) fluctuate in numbers with population peaks occurring at periods of 8 to 11 years throughout most of their range in the northern boreal forest (Keith 1963, Krebs etal. 1986). Many long-term studies have investigated this periodicity in hare numbers (e.g. Keith and Windberg 1978, Krebs et al. 1995) and several hypotheses have been generated concerning the causes of these fluctuations. The two main hypotheses for this cause are predation, and over-winter food shortage (Krebs et al. 1995). As a result, research on the hare cycle has concentrated on investigating the interactions between the hares, their predators and winter food supply and consequently there has been relatively little research effort focused on the summer food supply. In this thesis I will examine summer diet selection by snowshoe hares and attempt to elucidate how plant qualities such as spatial distribution, nutritional content and defensive compounds affect hare food choice. The cycle in hare population numbers is more or less synchronous throughout most of their range (Sinclair et al. 1993 and Sinclair and Goslinel997) and when the hare population reaches peak numbers it is the dominant herbivore in the boreal forest system (Boutin etal. 1995). Changes in hare population numbers effect the whole boreal ecosystem. Concurrent changes (with a one-year lag) in population numbers have been documented in the predators of hares, (Keith et al. 1977, Keith 1990, Boutin et al. 1995), 1 both avian (e.g. great horned owls and goshawks) and mammalian (e.g. lynx and coyotes). Woody plant species, which comprise the majority of the winter diet of the hares, suffer heavy browsing in peak population years (Pease et al. 1979, Smith et al. 1988, Keith 1990) and subsequently undergo a period of regrowth during the time of low hare numbers. Many of these plant species contain chemicals which act as feeding deterrents (Bryant and Kuropat 1980, Sinclair and Smith 1984, Bryant et al.
Recommended publications
  • Radiocarbon Dates Reveal That Lupinus Arcticus Plants Were Grown
    788 Forum Letters J. Scott and Alex Wild for photographs for Fig. 1. Sandye and its myrmecophyte host. Proceedings of the Royal Society of London B Adams, Frank Aylward, Alissa Hanshew and Garret Suen Biological Sciences 265: 569–575. provided comments on a draft of the commentary. This work Heil M, McKey D. 2003. Protective ant–plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecological and was supported by the Carlsberg Foundation (to M.P.) and by Evolutionary Systematics 34: 425–453. the NSF (to C.C.; CAREER-747002, MCB-0702025, and von Linnaeus C. 1758. Systema naturae, per regna tria naturae, secundum MCB-0731822). classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Published by Typis Ioannis Thomae, v.1, Oxford University. Michael Poulsen and Cameron R. Currie* Little AE, Currie CR. 2008. Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89: 1216–22. University of Wisconsin-Madison, Matsuura K. 2006. Termite-egg mimicry by a sclerotium-forming fungus. Department of Bacteriology, 4325 Microbial Sciences Proceedings of the Royal Society of London B Biological Sciences 273: Building, 1550 Linden Dr., Madison, WI 53706, 1203–1209. USA (*Author for correspondence: Möller A. 1893. Die Pilzgärten einiger südamerikanischer Ameisen. Jena, + Germany: Gustav Fischer. tel 1 608 890 0237; email [email protected]) Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM, Karban R. 2008. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319: References 192–195. Rico-Gray V, Oliveira PS.
    [Show full text]
  • Wildlife Viewing
    Wildlife Viewing Common Yukon roadside flowers © Government of Yukon 2019 ISBN 987-1-55362-830-9 A guide to common Yukon roadside flowers All photos are Yukon government unless otherwise noted. Bog Laurel Cover artwork of Arctic Lupine by Lee Mennell. Yukon is home to more than 1,250 species of flowering For more information contact: plants. Many of these plants Government of Yukon are perennial (continuously Wildlife Viewing Program living for more than two Box 2703 (V-5R) years). This guide highlights Whitehorse, Yukon Y1A 2C6 the flowers you are most likely to see while travelling Phone: 867-667-8291 Toll free: 1-800-661-0408 x 8291 by road through the territory. Email: [email protected] It describes 58 species of Yukon.ca flowering plant, grouped by Table of contents Find us on Facebook at “Yukon Wildlife Viewing” flower colour followed by a section on Yukon trees. Introduction ..........................2 To identify a flower, flip to the Pink flowers ..........................6 appropriate colour section White flowers .................... 10 and match your flower with Yellow flowers ................... 19 the pictures. Although it is Purple/blue flowers.......... 24 Additional resources often thought that Canada’s Green flowers .................... 31 While this guide is an excellent place to start when identi- north is a barren landscape, fying a Yukon wildflower, we do not recommend relying you’ll soon see that it is Trees..................................... 32 solely on it, particularly with reference to using plants actually home to an amazing as food or medicines. The following are some additional diversity of unique flora. resources available in Yukon libraries and bookstores.
    [Show full text]
  • Common Plants on the North Slope | the North Slope Borough
    8/17/2020 Common Plants on the North Slope | The North Slope Borough CALENDAR CONTACT Harry K. Brower Jr. , Mayor COMMON PLANTS ON THE NORTH SLOPE Home » Departments » Wildlife Management » Other Topics of Interest » Common Plants on the North Slope Plants are an important subsistence resource for residents across the North Slope. This page provides information on some of the common plants found on the North Slope of Alaska, including plants not used for subsistence. Plant names (common, scientific and Iñupiaq) are provided as well as descriptions, pictures and traditional uses. The resources used for identification are listed here as well as other resources for information on plants. List of Common Plants and others of the North Slope PDF Version Photo Identification of these Common Plants Unknowns - Got any ideas? Please send them to us! Plant Identification and Other Resources Thes pages are a work in progress. If you see any misinformation, misidentifications, or have pictures to add, please contact us. Information on the Iñupiaq names and traditional uses of these plants is especially welcomed. Check out "Unknown" pictures at bottom of page. Thanks! DISCLAIMER: This guide includes traditional uses of plants and other vegetation. The information is not intended to replace the advice of a physician or be used as a guide for self- medication. Neither the author nor the North Slope Borough claims that information in this guide will cure any illness. Just as prescription medicines can have different effects on www.north-slope.org/departments/wildlife-management/other-topics/common-plants-north-slope 1/3 8/17/2020 Common Plants on the North Slope | The North Slope Borough individuals, so too can plants.
    [Show full text]
  • Regeneration of Whole Fertile Plants from 30,000-Y-Old Fruit Tissue Buried in Siberian Permafrost
    Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost Svetlana Yashinaa,1, Stanislav Gubinb, Stanislav Maksimovichb, Alexandra Yashinaa, Edith Gakhovaa, and David Gilichinskyb,2 Institutes of aCell Biophysics and bPhysicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia Edited* by P. Buford Price, University of California, Berkeley, CA, and approved January 25, 2012 (received for review November 8, 2011) Whole, fertile plants of Silene stenophylla Ledeb. (Caryophylla- However, to date, no viable flowering plant remains have been ceae) have been uniquely regenerated from maternal, immature discovered from these ancient permafrost sediments. fruit tissue of Late Pleistocene age using in vitro tissue culture and Outside the permafrost zone the longevity of seeds in soil has clonal micropropagation. The fruits were excavated in northeast- been studied during the last 45 y in many places, including ar- ern Siberia from fossil squirrel burrows buried at a depth of 38 m chaeological sites (10, 11). At the moment, the oldest viable in undisturbed and never thawed Late Pleistocene permafrost seeds with the ability to germinate were radiocarbon dated to the sediments with a temperature of −7 °C. Accelerator mass spec- first and eighth centuries of the Common Era. These are, re- trometry (AMS) radiocarbon dating showed fruits to be 31,800 ± spectively, Phoenix dactylifera found near the Dead Sea (12) and 300 y old. The total γ-radiation dose accumulated by the fruits Nelumbo nucifera found in northeastern China (13). during this time was calculated as 0.07 kGy; this is the maximal The burrows from which our study material derived were buried reported dose after which tissues remain viable and seeds still in permanently frozen loess-ice deposits on the right bank of lower germinate.
    [Show full text]
  • Calandrinia and Montiopsis, RICK LUPP 91 Junos from a Minefield, JANIS RUKSANS 95 FORUM: Longevity in the Rock Garden 103
    ROCK GARDEN Quarterly Volume 62 Number 2 Spring 2004 Cover: Dodecatheon pulchellum subsp. monanthum (syn. D. radicatum) in Minnesota. Painting by Diane Crane. All material copyright ©2004 North American Rock Garden Society Printed by Allen Press, 800 E. 10th St., Lawrence, Kansas ROCK GARDEN Quarterly BULLETIN OF THE NORTH AMERICAN ROCK GARDEN SOCIETY Volume 62 Number 2 Spring 2004 Contents The Mountains of Northeastern Oregon, LOREN RUSSELL 82 With NARGS in the Wallowas, DAVID SELLARS 89 Growing Calandrinia and Montiopsis, RICK LUPP 91 Junos from a Minefield, JANIS RUKSANS 95 FORUM: Longevity in the Rock Garden 103 Diamonds in the Rough, BRIAN BIXLEY 110 Tim Roberts and His Tufa Mountain, REX MURFITT 112 PLANT PORTRAITS Lewisia disepala, JACK MUZATKO 132 Narcissus cantabricus and N. romieuxii, WALTER BLOM 133 Lupinus arcticus, ANNA LEGGATT 134 Primula abchasica, JOHN & JANET GYER 135 Allium aaseae, MARK MCDONOUGH & JAY LUNN 137 How to Enter the 2004 Photo Contest 139 BOOKS R. Nold, Columbines, rev. by CARLO BALISTRJERI 141 W. Gray, Penstemons Interactive Guide, rev. by ROBERT C. MCFARLANE 143 A Penstemon Bookshelf, GINNY MAFFITT 145 J. Richards, Primula, 2nd ed., rev. by JAY LUNN 147 T. Avent, So you want to start a nursery, rev. by ERNIE O'BYRNE 149 NARGS Coming Events 150 The Mountains of Northeastern Oregon Loren Russell Introduction center of scenic beauty and floristic diversity—home to about 2400 species of Avascular plants, more than 60 percent of the state's flora—the mountains of northeastern Oregon have long been one of my favorite destinations for hiking and botanizing. The Wallowas and the Blue Mountain complex, which includes the Ochoco, Maury, Aldrich, Strawberry, Greenhorn and Elkhorn ranges, are collectively known as the Blue Mountain Region and extend for more than 200 miles, from the northeastern corner of Oregon and adjacent southeastern Wash• ington to Prineville in central Oregon.
    [Show full text]
  • Common Plants of the North Slope
    NORTH SLOPE BOROUGH Department of Wildlife Management P.O. Box 69 Barrow, Alaska 99723 Phone: (907) 852-0350 FAX: (907) 852 0351 Taqulik Hepa, Director Common Plants of the North Slope Plants are an important subsistence resource for residents across the North Slope. This document provides information on some of the common plants found on the North Slope of Alaska, including plants not used for subsistence. Plant names (common, scientific and Iñupiaq) are provided as well as descriptions, pictures and traditional uses. The resources used for identification are listed below as well as other resources for information on plants. DISCLAIMER: This guide includes traditional uses of plants and other vegetation. The information is not intended to replace the advice of a physician or be used as a guide for self- medication. Neither the author nor the North Slope Borough claims that information in this guide will cure any illness. Just as prescription medicines can have different effects on individuals, so too can plants. Historically, medicinal plants were used only by skilled and knowledgeable people, such as traditional healers, who knew how to identify the plants and avoid misidentifications with toxic plants. Inappropriate medicinal use of plants may result in harm or death. LIST OF PLANTS • Alaska Blue Anemone • Alder / Nunaŋiak or Nunaniat • Alpine Blueberry / Asiat or Asiavik • Alpine Fescue • Alpine Forget-Me-Not • Alpine Foxtail • Alpine Milk Vetch • Alpine Wormwood • Arctic Daisy • Arctic Forget-Me-Not • Arctic Groundsel • Arctic Lupine
    [Show full text]
  • Rare Vascular Plants of the North Slope a Review of the Taxonomy, Distribution, and Ecology of 31 Rare Plant Taxa That Occur in Alaska’S North Slope Region
    BLM U. S. Department of the Interior Bureau of Land Management BLM Alaska Technical Report 58 BLM/AK/GI-10/002+6518+F030 December 2009 Rare Vascular Plants of the North Slope A Review of the Taxonomy, Distribution, and Ecology of 31 Rare Plant Taxa That Occur in Alaska’s North Slope Region Helen Cortés-Burns, Matthew L. Carlson, Robert Lipkin, Lindsey Flagstad, and David Yokel Alaska The BLM Mission The Bureau of Land Management sustains the health, diversity and productivity of the Nation’s public lands for the use and enjoyment of present and future generations. Cover Photo Drummond’s bluebells (Mertensii drummondii). © Jo Overholt. This and all other copyrighted material in this report used with permission. Author Helen Cortés-Burns is a botanist at the Alaska Natural Heritage Program (AKNHP) in Anchorage, Alaska. Matthew Carlson is the program botanist at AKNHP and an assistant professor in the Biological Sciences Department, University of Alaska Anchorage. Robert Lipkin worked as a botanist at AKNHP until 2009 and oversaw the botanical information in Alaska’s rare plant database (Biotics). Lindsey Flagstad is a research biologist at AKNHP. David Yokel is a wildlife biologist at the Bureau of Land Management’s Arctic Field Office in Fairbanks. Disclaimer The mention of trade names or commercial products in this report does not constitute endorsement or rec- ommendation for use by the federal government. Technical Reports Technical Reports issued by BLM-Alaska present results of research, studies, investigations, literature searches, testing, or similar endeavors on a variety of scientific and technical subjects. The results pre- sented are final, or a summation and analysis of data at an intermediate point in a long-term research project, and have received objective review by peers in the author’s field.
    [Show full text]
  • Floral Longevity and Attraction of Arctic Lupine, Lupinus Arcticus: Implications for Pollination Efficiency
    The Arbutus Review • 2019 • Vol. 10, No. 1 • https://doi.org/10.18357/tar101201918921 Floral Longevity and Attraction of Arctic Lupine, Lupinus arcticus: Implications for Pollination Efficiency Clara Reid∗ University of Victoria [email protected] Abstract Pollination by insects is a mutualistic relationship in which flowers receive pollen for reproduction while pollinators are rewarded with pollen or nectar. Floral longevity (the period an individual flower blooms) and floral attraction (the period during which pollinators are attracted to the flower, often indicated by petal colour) both play prominent roles in plant and pollinator success. This study investigated whether floral longevity and floral attraction were mediated by pollination type in arctic lupine (Lupinus arcticus S. Wats.), a common herbaceous perennial in northwestern North America. Flowers were either open to pollinators, cross-pollinated by hand, or bagged to prevent cross-pollination, and floral longevity, seed set, and flower colour were observed. Open- and hand-pollinated flowers had significantly shorter floral longevities and higher percent fruit sets than bagged flowers. A colour change of the banner petal marking from white to pink occurred in some flowers and was a signal of floral attraction, as pollinators preferentially visited pre-change flowers. Pre-change flowers contained more pollen and were less likely to have been injured by herbivory than post-change flowers, yet the colour change was not related to pollination type or fruit set. Pollination-induced shortening of floral longevity is likely an adaptation to limited plant resources and pollinator visitation rates. For L. arcticus, this could be influenced by short growing seasons and low annual temperatures in the study area.
    [Show full text]
  • Rare Vascular Plants of the North Slope a Review of the Taxonomy, Distribution, and Ecology of 31 Rare Plant Taxa That Occur in Alaska’S North Slope Region
    BLM U. S. Department of the Interior Bureau of Land Management BLM Alaska Technical Report 58 BLM/AK/GI-10/002+6518+F030 December 2009 Rare Vascular Plants of the North Slope A Review of the Taxonomy, Distribution, and Ecology of 31 Rare Plant Taxa That Occur in Alaska’s North Slope Region Helen Cortés-Burns, Matthew L. Carlson, Robert Lipkin, Lindsey Flagstad, and David Yokel Alaska The BLM Mission The Bureau of Land Management sustains the health, diversity and productivity of the Nation’s public lands for the use and enjoyment of present and future generations. Cover Photo Drummond’s bluebells (Mertensii drummondii). © Jo Overholt. This and all other copyrighted material in this report used with permission. Author Helen Cortés-Burns is a botanist at the Alaska Natural Heritage Program (AKNHP) in Anchorage, Alaska. Matthew Carlson is the program botanist at AKNHP and an assistant professor in the Biological Sciences Department, University of Alaska Anchorage. Robert Lipkin worked as a botanist at AKNHP until 2009 and oversaw the botanical information in Alaska’s rare plant database (Biotics). Lindsey Flagstad is a research biologist at AKNHP. David Yokel is a wildlife biologist at the Bureau of Land Management’s Arctic Field Office in Fairbanks. Disclaimer The mention of trade names or commercial products in this report does not constitute endorsement or rec- ommendation for use by the federal government. Technical Reports Technical Reports issued by BLM-Alaska present results of research, studies, investigations, literature searches, testing, or similar endeavors on a variety of scientific and technical subjects. The results pre- sented are final, or a summation and analysis of data at an intermediate point in a long-term research project, and have received objective review by peers in the author’s field.
    [Show full text]
  • The Lautaret Alpine Botanical Garden Guidebook
    The Lautaret Alpine Botanical Garden Guidebook Serge Aubert The Lautaret Alpine Botanical Garden, as it exists today, has been shaped by the work of the bota- nists involved in its development for over a century. This guide presents the Garden itself (its history, work and collections), the exceptional environment of the Col du Lautaret, and provides an intro- duction to botany and alpine ecology. The guidebook also includes the results of research work on alpine plants and ecosystems carried out at Lautaret, notably by the Laboratory of Alpine Ecology based in Grenoble. The Alpine Garden has a varied remit: it is open to the general public to raise their awareness of the wealth of diversity in alpine environments and how best to conserve it, it houses and develops a variety of collections (species from mountain ranges across the world, a seed bank, herbarium, arboretum, image bank & specialist library), it trains students and contributes to research in alpine biology. It is a university botanical garden which develops synergies between science and society, welcoming in 15,000 – 20,000 visitors each summer. Prior to 2005 the Garden was not directly involved in research, but since then a partnership has been established with the Chalet-Laboratory through the Joseph Fourier Alpine Research Station, and mixed structure of the Grenoble University and of the French Scientific Recearch Centre (CNRS). These shared facilities also include the Robert Ruffier-Lanche arboretum and the glasshouses on the Grenoble campus. The Lautaret site is the only high altitude biological research station in Europe, and has been recognised by the French government’s funding programme (Investissements d’ave- nir) as Biology and Health National Infrastructure (ANAEE-S) in the field of ecosystem science and experimentation.
    [Show full text]
  • Vascular Plant and Vertebrate Species Lists from Npspecies As of September 30, 2001 for Denali National Park and Preserve
    Vascular Plant and Vertebrate Species Lists From NPSpecies as of September 30, 2001 For Denali National Park and Preserve A Supplemental Report to the Final Report – Compilation of Existing Species Data In Alaska’s National Parks By Julia Lenz, Tracey Gotthardt, Mike Kelly, and Robert Lipkin Alaska Natural Heritage Program Environment and Natural Resources Institute University of Alaska Anchorage For National Park Service Inventory and Monitoring Program Alaska Region September 30, 2001 In Partial Completion of Cooperative Agreement #9910-00-013 University of Alaska Anchorage Environment and Natural Resources Institute 707 A St. Anchorage, Alaska 9950 Table of Contents INTRODUCTION ....................................................................................................... 1 VASCULAR PLANT SPECIES LIST ........................................................................ 2 FISH SPECIES LIST ................................................................................................ 63 BIRD SPECIES LIST................................................................................................ 64 MAMMAL SPECIES LIST ...................................................................................... 72 AMPHIBIAN SPECIES LIST................................................................................... 75 i INTRODUCTION This report contains species lists for vascular plant and vertebrate species entered in the National Park Service’s NPSpecies database, by the Alaska Natural Heritage Program (AKNHP) for Denali
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2016-12-15
    Kenai National Wildlife Refuge Species List, version 2016-12-15 Kenai National Wildlife Refuge biology staff December 15, 2016 2 Cover images represent changes to the checklist. Top left: Ligyrocoris sylvestris feeding on Rubus chamaemorus, Headquarters Lake wetland, July 15, 2013 (http://arctos.database.museum/media/10373139). Image CC0 Matt Bowser. Top right: Lecania dubitans collected off of Ski- lak Loop Road by Ed Berg on June 23, 2005 (http://arctos.database. museum/media/10419592). Image CC0 Matt Bowser. Bottom left: Pip- toporus betulinus observed on March 31, 2015 near Headquarters Lake (http://www.inaturalist.org/observations/1353794). Image CC BY Matt Bowser. Bottom right: Mimulus guttatus photographed on the Fuller Lake Trail, July 13, 2014 (http://www.inaturalist.org/observations/ 799839). Image CC BY-NC-ND Matt Muir. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Refuge checklist 7 Vertebrates .......................................................... 7 Phylum Chordata.................................................... 7 Invertebrates ......................................................... 13 Phylum Annelida.................................................... 13 Phylum Arthropoda .................................................. 13 Phylum Cnidaria.................................................... 34 Phylum Mollusca...................................................
    [Show full text]