Fluctuations Glaciers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PROGETTO ANTARTIDE Rapporto Sulla Campagna Antartica Estate Australe 1996
PROGRAMMA NAZIONALE DI RICERCHE IN ANTARTIDE Rapporto sulla Campagna Antartica Estate Australe 1996 - 97 Dodicesima Spedizione PROGETTO ANTARTIDE ANT 97/02 PROGRAMMA NAZIONALE DI RICERCHE IN ANTARTIDE Rapporto sulla Campagna Antartica Estate Australe 1996 - 97 Dodicesima Spedizione A cura di J. Mϋller, T. Pugliatti, M.C. Ramorino, C.A. Ricci PROGETTO ANTARTIDE ENEA - Progetto Antartide Via Anguillarese,301 c.p.2400,00100 Roma A.D. Tel.: 06-30484816,Fax:06-30484893,E-mail:[email protected] I N D I C E Premessa SETTORE 1 - EVOLUZIONE GEOLOGICA DEL CONTINENTE ANTARTICO E DELL'OCEANO MERIDIONALE Area Tematica 1a Evoluzione Geologica del Continente Antartico Progetto 1a.1 Evoluzione del cratone est-antartico e del margine paleo-pacifico del Gondwana.3 Progetto 1a.2 Evoluzione mesozoica e cenozoica del Mare di Ross ed aree adiacenti..............11 Progetto 1a.3 Magmatismo Cenozoico del margine occidentale antartico..................................17 Progetto 1a.4 Cartografia geologica, geomorfologica e geofisica ...............................................18 Area Tematica 1b-c Margini della Placca Antartica e Bacini Periantartici Progetto 1b-c.1 Strutture crostali ed evoluzione cenozoica della Penisola Antartica e del margine coniugato cileno ......................................................................................25 Progetto 1b-c.2 Indagini geofisiche sul sistema deposizionale glaciale al margine pacifico della Penisola Antartica.........................................................................................42 -
The Commonwealth Trans-Antarctic Expedition 1955-1958
THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword .................................................................................................................................. -
Late Pleistocene Interactions of East and West Antarctic Ice-Flow Regim.Es: Evidence From
J oumal oJ Glaciology, r·ol. 42, S o. 142, 1996 Late Pleistocene interactions of East and West Antarctic ice-flow regim.es: evidence from. the McMurdo Ice Shelf THO}'IAS B . KELLOGG, TERRY H UG HES AND D .\VJD!\ E. KELLOGG Depa rtmen t oJ Geo logical Sciences alld Institute for QJlatemm) Studies, UI/ iversilj' oJ ,\Jail/ e, Orono , "faine 04469. [j.S. A. ABSTRACT. \Ve prese nt new interpreta ti ons of d eglacia tion in M cMurdo Sound and the wes tern R oss Sea, with o bservati onall y based reconstructi ons of interacti ons between Eas t a nd \Ves t Antarcti c ice a t the las t glacial maximum (LG YI ), 16 000, 12 000, 8000 a nd 4000 BP. At the LG M , East Anta rctic ice fr om Muloek Glacier spli t; one bra nch turned wes tward south of R oss Tsland b ut the other bra nch rounded R oss Island before fl owing south"'est in to lVf cMurdo Sound. This fl ow regime, constrained b y a n ice sa ddle north of R n. s Isla nd, is consisten t wi th the reconstruc ti on of Stuiyer a nd others (198I a ) . After the LG lVI. , grounding-line retreat was m ost ra pid in areas \~ ' i th greates t wa ter d epth, es pecially a long th e Vic toria Land coast. By 12 000 BP , the ice-flow regime in :'.1cMurdo Sound c ha nged to through-flowing l\1ulock G lacier ice, with lesse r contributions from K oettlitz, Blue a nd F crra r Glaciers, because the formcr ice saddle north of R oss Isla nd was repl aced by a d om e. -
Rapporto Sulla Campagna Antartica Estate Australe 1998-99 PROGETTO ANTARTIDE
PROGRAMMA NAZIONALE DI RICERCHE IN ANTARTIDE Rapporto sulla Campagna Antartica Estate Australe 1998-99 Quattordicesima Spedizione PROGETTO ANTARTIDE ANT 99/04 PROGRAMMA NAZIONALE DI RICERCHE IN ANTARTIDE Rapporto sulla Campagna Antartica Estate Australe 1998-99 Quattordicesima Spedizione A cura di Tiziana Pugliatti e M. Chiara Ramorino PROGETTO ANTARTIDE ENEA - Progetto Antartide Via Anguillarese, 301 c.p. 2400, 00100 Roma A.D. Tel.: 0630484816, Fax: 0630484893, E-mail:[email protected] Sito WEB: http://www2.pnra.it Indice I N D I C E PREMESSA........................................................................................................................................................v ATTIVITA’ A BAIA TERRA NOVA E PRESSO ALTRE BASI SETTORE 1 - EVOLUZIONE GEOLOGICA DEL CONTINENTE ANTARTICO E DELL'OCEANO MERIDIONALE Area Tematica 1a Evoluzione Geologica del Continente Antartico Progetto 1a.2 Evoluzione mesozoica e cenozoica del Mare di Ross e aree adiacenti..................3 Progetto 1a.4 Cartografia geologica, geomorfologica e geofisica .................................................3 Progetto 1a.5 Cape Roberts ..........................................................................................................6 SETTORE 2 - GLOBAL CHANGE Sottosettore 2a - Glaciologia e Paleoclima Area Tematica 2a.1 Glaciologia e Paleoclima Progetto 2a.1.1 Bilancio di massa, monitoraggio e studio paleoclimatico della calotta antartica orientale - settore pacifico ......................................................................11 -
S41467-018-05625-3.Pdf
ARTICLE DOI: 10.1038/s41467-018-05625-3 OPEN Holocene reconfiguration and readvance of the East Antarctic Ice Sheet Sarah L. Greenwood 1, Lauren M. Simkins2,3, Anna Ruth W. Halberstadt 2,4, Lindsay O. Prothro2 & John B. Anderson2 How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding 1234567890():,; line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet’s stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries. 1 Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden. 2 Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA. 3 Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA. 4 Department -
Washington Geology, V, 21, No. 2, July 1993
WASHINGTON GEOLOGY Washington Department of Natural Resources, Division of Geology and Earth Resources Vol. 21, No. 2, July 1993 , Mount Baker volcano from the northeast. Bagley Lakes, in the foreground, are on a Pleistocene recessional moraine that is now the parking lot for Mount Baker Ski Area. Just below Sherman Peak, an erosional remnant on the left skyline, is Boulder Glacier. Park and Rainbow Glaciers share the area below the main summit (Grant Peak, 10,778 ft) . Boulder, Park, and Rainbow Glaciers drain into Baker Lake, which is out of the photo on the left. Mazama Glacier forms under the ridge that extends to Hadley Peak on the right. (See related article, p. 3 and Fig. 2, p. 5.) Table Mountain, the flat area just above and to the right of center, is a truncated lava flow. Lincoln Peak is just visible over the right shoulder of Mount Baker. Photo taken in 1964. In This Issue: Current behavior of glaciers in the North Cascades and its effect on regional water supplies, p. 3; Radon potential of Washington, p. 11; Washington areas selected for water quality assessment, p. 14; The changing role of cartogra phy in OGER-Plugging into the Geographic Information System, p. 15; Additions to the library, p. 16. Revised State Surface Minin!Jf Act-1993 by Raymond Lasmanls WASHINGTON The 1993 regular session of the 53rd Le:gislature passed a major revision of the surface mine reclamation act as En GEOLOGY grossed Second Substitute Senate Bill No. 5502. The new law takes effect on July 1, 1993. Both environmental groups and surface miners testified in favor of the act. -
ICE FLOW VELOCITY MAPPING in EAST ANTARCTICA USING HISTORICAL IMAGES from 1960S to 1980S: RECENT PROGRESS
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 XXIV ISPRS Congress (2021 edition) ICE FLOW VELOCITY MAPPING IN EAST ANTARCTICA USING HISTORICAL IMAGES FROM 1960s TO 1980s: RECENT PROGRESS S. Luo 1,2, Y. Cheng 1,2, Z. Li 1,2, Y. Wang 1,2, K. Wang 1,2, X. Wang 1,2, G. Qiao 1,2, W. Ye 1,2, Y. Li 1,2, M. Xia 1,2, X. Yuan 1,2, Y. Tian 1,2, X. Tong 1,2, R. Li 1,2* 1Center for Spatial Information Science and Sustainable Development Applications, Tongji University, 1239 Siping Road, Shanghai, China - (shulei, chengyuan_1994, tjwkl, wxfjj620, qiaogang, menglianxia, 1996yuanxiaohan, tianyixiang, xhtong, rli) @tongji.edu.cn, (zhenli_0324, yanjunli_1995) @outlook.com, [email protected], [email protected] 2 College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, China Commission TCIII, WG III/9 KEY WORDS: East Antarctica, Ice Flow, Historical Image, Velocity Validation, Ice Flux, Mass Balance ABSTRACT: Recent research indicates that the estimated elevation changes and associated mass balance in East Antarctica are of some degree of uncertainty; a light accumulation has occurred in its vast inland regions, while mass loss in Wilkes Land appears significant. It is necessary to study the mass change trend in the context of a long period of the East Antarctic Ice Sheet (EAIS). The input-output method based on surface ice flow velocity and ice thickness is one of the most important ways to estimate the mass balance, which can provide longer-term knowledge of mass balance because of the availability of the early satellites in 1960s. -
Drainage Structures and Transit-Time Distributions in Conduit-Dominated
Drainage structures and transit-time distributions in conduit-dominated and fissured karst aquifer systems Zur Erlangung des akademischen Grades einer DOKTORIN DER NATURWISSENSCHAFTEN von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Dipl.-Geol. Ute Lauber aus Dachau Tag der mündlichen Prüfung: 21.11.2014 Referent: Prof. Dr. Nico Goldscheider Korreferent: Prof. Dr. Tim Bechtel Karlsruhe 2014 Abstract Abstract Abstract Karst aquifers are widely distributed across the world and are important groundwater resources. Solutionally-enlarged conduits embedded in fissured rock matrix result in a highly heterogene- ous underground drainage pattern that makes karst aquifers difficult to characterize. To ensure sustainable protection and management of karst water resources, hydrogeologic knowledge of karst systems is required. However, the quantitative characterization of groundwater flow in karst systems remains a major challenge. Specific investigating techniques and approaches are needed to account for the complexity of drainage. This thesis emphasizes the identification of drainage structures and the quantification of related transit-time distributions and hydraulic pa- rameters. To account for the strong heterogeneities of different types of catchment areas, three diverse karst aquifer systems are investigated: a conduit-dominated karst system, a fissured karst system and an aquifer system that comprises a karst and a porous-media (alluvial/rockfall) aquifer. For a detailed hydrogeologic assessment of the different catchment areas, adapted methods applied include a combination of artificial tracer tests, natural tracer analysis, and dis- charge analysis. The first two parts of this thesis describe a conduit-dominated karst system, the catchment area of the Blautopf (Swabian Alb, Germany). -
Scientific Information 2001/2002 Annual New Zealand
Scientific Information 2001/2002 Annual New Zealand Forward Plans LGP The Latitudinal Gradient Project (LGP) is aimed at increasing the understanding of the coastal marine, freshwater and terrestrial ecosystems that exist along the Victoria Land coastline in the Ross Sea region, and describing potential environmental variability that may occur in the future. Antarctica New Zealand is providing the logistical capabilities for research camps to be located at specific sites along the Victoria Land coast. Thus, the opportunity to work at particular locations in collaboration with other scientists from various disciplines and National Antarctic Programmes is provided. LGP has been formally incorporated into the SCAR programme RiSCC (Regional Sensitivity to Climate Change). Certain data collected within the LGP will be housed and made available within the RiSCC database framework. Details on how the data will be shared and the timing of when the data will be made available have yet to be decided. It is intended that publications arising from the LGP will be published in a special issue of a refereed journal. Research under the LGP will be both ship-based and land-based. At present, ship-based research, funded under the Ministry of Fisheries’ BioRoss programme and the Italian Antarctic Programme, has been scheduled for January to March 2004 with a research voyage planned using two vessels aimed at supporting near-shore and deep-water marine research. The vessels dedicated to this research are NIWA’s RV Tangaroa, and the Italian Antarctic Programme’s RV Italica. Further information about the ship-based research can be found in the BioRoss research plan and in the BioRoss call for statements of interest. -
Report November 1996
International Council of Scientific Unions No13 report November 1996 Contents SCAR Group of Specialists on Global Change and theAntarctic (GLOCHANT) Report of bipolar meeting of GLOCHANT / IGBP-PAGES Task Group 2 on Palaeoenvironments from Ice Cores (PICE), 1995 1 Report of GLOCHANTTask Group 3 on Ice Sheet Mass Balance and Sea-Level (ISMASS), 1995 6 Report of GLOCHANT IV meeting, 1996 16 GLOCHANT IV Appendices 27 Published by the SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH at the Scott Polar Research Institute, Cambridge, United Kingdom INTERNATIONAL COUNCIL OF SCIENTIFIC UNIONS SCIENTIFIC COMMITfEE ON ANTARCTIC RESEARCH SCAR Report No 13, November 1996 Contents SCAR Group of Specialists on Global Change and theAntarctic (GLOCHANT) Report of bipolar meeting of GLOCHANT / IGBP-PAGES Task Group 2 on Palaeoenvironments from Ice Cores (PICE), 1995 1 Report of GLOCHANT Task Group 3 on Ice Sheet Mass Balance and Sea-Level (ISMASS), 1995 6 Report of GLOCHANT IV meeting, 1996 16 GLOCHANT IV Appendices 27 Published by the SCIENTIFIC COMMITfEE ON ANT ARCTIC RESEARCH at the Scott Polar Research Institute, Cambridge, United Kingdom SCAR Group of Specialists on Global Change and the Antarctic (GLOCHANT) Report of the 1995 bipolar meeting of the GLOCHANT I IGBP-PAGES Task Group 2 on Palaeoenvironments from Ice Cores. (PICE) Boston, Massachusetts, USA, 15-16 September; 1995 Members ofthe PICE Group present Dr. D. Raynaud (Chainnan, France), Dr. D. Peel (Secretary, U.K.}, Dr. J. White (U.S.A.}, Mr. V. Morgan (Australia), Dr. V. Lipenkov (Russia), Dr. J. Jouzel (France), Dr. H. Shoji (Japan, proxy for Prof. 0. Watanabe). Apologies: Prof. 0. -
1 Compiled by Mike Wing New Zealand Antarctic Society (Inc
ANTARCTIC 1 Compiled by Mike Wing US bulldozer, 1: 202, 340, 12: 54, New Zealand Antarctic Society (Inc) ACECRC, see Antarctic Climate & Ecosystems Cooperation Research Centre Volume 1-26: June 2009 Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Vessel names are shown viz: “Aconcagua” Ackroyd, Lieut. F: 1: 307, All book reviews are shown under ‘Book Reviews’ Ackroyd-Kelly, J. W., 10: 279, All Universities are shown under ‘Universities’ “Aconcagua”, 1: 261 Aircraft types appear under Aircraft. Acta Palaeontolegica Polonica, 25: 64, Obituaries & Tributes are shown under 'Obituaries', ACZP, see Antarctic Convergence Zone Project see also individual names. Adam, Dieter, 13: 6, 287, Adam, Dr James, 1: 227, 241, 280, Vol 20 page numbers 27-36 are shared by both Adams, Chris, 11: 198, 274, 12: 331, 396, double issues 1&2 and 3&4. Those in double issue Adams, Dieter, 12: 294, 3&4 are marked accordingly. Adams, Ian, 1: 71, 99, 167, 229, 263, 330, 2: 23, Adams, J.B., 26: 22, Adams, Lt. R.D., 2: 127, 159, 208, Adams, Sir Jameson Obituary, 3: 76, A Adams Cape, 1: 248, Adams Glacier, 2: 425, Adams Island, 4: 201, 302, “101 In Sung”, f/v, 21: 36, Adamson, R.G. 3: 474-45, 4: 6, 62, 116, 166, 224, ‘A’ Hut restorations, 12: 175, 220, 25: 16, 277, Aaron, Edwin, 11: 55, Adare, Cape - see Hallett Station Abbiss, Jane, 20: 8, Addison, Vicki, 24: 33, Aboa Station, (Finland) 12: 227, 13: 114, Adelaide Island (Base T), see Bases F.I.D.S. Abbott, Dr N.D. -
Recent Extension Driven by Mantle Upwelling Beneath the Admiralty Mountains (East Antarctica)
TECTONICS, VOL. 27, XXXXXX, doi:10.1029/2007TC002197, 2008 Click Here for Full Article 2 Recent extension driven by mantle upwelling beneath the 3 Admiralty Mountains (East Antarctica) 1 1 2 3 4 Claudio Faccenna, Federico Rossetti, Thorsten W. Becker, Stefania Danesi, 3 5 and Andrea Morelli 6 Received 10 August 2007; revised 4 April 2008; accepted 17 June 2008; published XX Month 2008. 8 [1] Northern Victoria Land is located at the boundary structed by subsidence and uplift history, is commonly 47 9 between an extended, presumably hot, region (West considered polyphased, involving an early Cretaceous phase 48 10 Antarctic Rift System) and the thick, possibly cold, linked to the Gondwana breakup followed by a major 49 11 East Antarctic craton. The style and timing of Tertiary Cenozoic one [e.g., Cooper et al., 1997; Behrendt et al., 50 12 deformation along with relationships with the 1991; Tessensohn and Wo¨rner, 1991; Lawver and Gahagan, 51 1994; Davey and Brancolini, 1995; Salvini et al., 1997; 52 13 magmatic activity are still unclear, and contrasting Behrendt, 1999; Cande et al., 2000; Mukasa and Dalziel, 53 14 models have been proposed. We performed structural 2000; Cande and Stock, 2004]. 54 15 and morphotectonic analyses at the NE termination of [3] There are two outstanding questions concerning the 55 16 northern Victoria Land in the Admiralty Mountains kinematic and tectonic evolution of the Cenozoic tectonic 56 17 area, where the relationship between topography, episode in the WARS. First, the pattern of deformation 57 18 tectonics, and magmatism is expected to be well changes abruptly moving from Victoria Land to the western 58 19 pronounced.