Full Paper Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner Federico Lopez-Moya1 , Magdalena Martin-Urdiroz2 , Miriam Oses-Ruiz2,3 , Vincent M. Were2,3 , Mark D. Fricker4 , George Littlejohn2,5 , Luis V. Lopez-Llorca1 and Nicholas J. Talbot2,3 1Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante 03690, Spain; 2School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK; 3The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; 4Department of Plant Science, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK; 5School of Biological and Marine Sciences, Plymouth University, Portland Square Building Room A404, Drake Circus, Plymouth, PL4 8AA, UK Summary Author for correspondence: Chitosan is a partially deacetylated linear polysaccharide composed of b-1,4-linked units of Nicholas J. Talbot D-glucosamine and N-acetyl glucosamine. As well as a structural component of fungal cell Email:
[email protected] walls, chitosan is a potent antifungal agent. However, the mode of action of chitosan is poorly understood. Received: 16 May 2020 Here, we report that chitosan is effective for control of rice blast disease. Chitosan applica- Accepted: 25 January 2021 tion impairs growth of the blast fungus Magnaporthe oryzae and has a pronounced effect on appressorium-mediated plant infection. Chitosan inhibits septin-mediated F-actin remodelling New Phytologist (2021) 230: 1578–1593 at the appressorium pore, thereby preventing repolarization of the infection cell. doi: 10.1111/nph.17268 Chitosan causes plasma membrane permeabilization of M.