The Zymoseptoria Tritici Orfeome: a Functional Genomics

Total Page:16

File Type:pdf, Size:1020Kb

The Zymoseptoria Tritici Orfeome: a Functional Genomics bioRxiv preprint doi: https://doi.org/10.1101/582205; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 The Zymoseptoria tritici ORFeome: a functional genomics 2 community resource 3 4 Yogesh Chaudhari*,a, Timothy C. Cairns*,b, Yaadwinder Sidhua, Victoria Attaha, 5 Graham Thomasa, Michael Csukaic, Nicholas J. Talbotd, David J. Studholmea,e, Ken 6 Haynesa,f. 7 *Authors contributed equally to this study 8 aBiosciences, University of Exeter, Exeter EX4 4QD, United Kingdom 9 bCurrent address; Tianjin Institute of Industrial Biotechnology, Chinese Academy of 10 Sciences, Tianjin, 300308, China 11 cSyngenta, Jealott’s Hill International Research Centre, Bracknell, RG42 6EY 12 dCurrent address; The Sainsbury Laboratory, University of East Anglia, Norwich 13 Research Park, NR47UH, United Kingdom 14 eCorresponding author ([email protected]) 15 fAuthor deceased 16 Emails: 17 [email protected] 18 [email protected] 19 [email protected] 20 [email protected] 21 [email protected] 22 [email protected] 23 [email protected] 24 [email protected] 25 1 bioRxiv preprint doi: https://doi.org/10.1101/582205; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 26 Abstract: 27 Libraries of protein-encoding sequences can be generated by identification of open 28 reading frames (ORFs) from a genome of choice that are then assembled into 29 collections of plasmids termed ORFeome libraries. These represent powerful 30 resources to facilitate functional genomic characterization of genes and their encoded 31 products. Here, we report the generation of an ORFeome for Zymoseptoria tritici, 32 which causes the most serious disease of wheat in temperate regions of the world. 33 We screened the genome of strain IP0323 for high confidence gene models, 34 identifying 4075 candidates from 10,933 predicted genes. These were amplified from 35 genomic DNA, cloned into the Gateway® Entry Vector pDONR207, and sequenced, 36 providing a total of 3022 quality-controlled plasmids. The ORFeome includes genes 37 predicted to encode effectors (n = 410) and secondary metabolite biosynthetic proteins 38 (n = 171), in addition to genes residing at dispensable chromosomes (n= 122), or those 39 that are preferentially expressed during plant infection (n = 527). The ORFeome 40 plasmid library is compatible with our previously developed suite of Gateway® 41 Destination vectors, which have various combinations of promoters, selection 42 markers, and epitope tags. The Z. tritici ORFeome constitutes a powerful resource for 43 functional genomics, and offers unparalleled opportunities to understand the biology 44 of Z. tritici. 45 46 Keywords: ORFeome, Zymoseptoria tritici, Mycosphaerella graminicola, functional 47 genomics. 48 49 Dedication: This paper is dedicated to the memory of Ken Haynes who led the study 50 and was an outstanding fungal biologist, as well as an inspirational colleague, friend 51 and mentor to his fellow co-authors. 52 53 54 2 bioRxiv preprint doi: https://doi.org/10.1101/582205; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 55 Introduction 56 Fungal pathogens kill more people per year than malaria, and result in crop destruction 57 or post-harvest spoilage that destroys enough food to feed approximately 10% of the 58 population (1, 2). Technological advances in fungal genomics, transcriptomics, 59 proteomics, metabolomics, bioinformatics, and network analyses, however, now 60 enable pathogenic fungi to be studied as integrated systems, providing unparalleled 61 opportunities to understand their biology (3, 4). Functional genomic approaches, which 62 define the function and interactions of genes and their encoded products at a genome 63 or near-genome level, are increasingly used to dissect host pathogen interactions, 64 virulence factors, drug resistance, and infectious growth during fungal disease (5–9). 65 However, a significant constraint to conducting functional genomic experiments are 66 high reagent and labour costs, due to the necessity to study thousands, or tens of 67 thousands of genes from a given fungal pathogen. 68 In order to obviate this challenge, community accessible libraries have been 69 developed, which consist of hundreds or thousands of either individual genes, null 70 mutant or over-expression strains, which ultimately enable facile and high throughput 71 experimentation by the end user at a minimal expense (10–17). ORFeomes are 72 collections of open reading frames (ORFs) that are encoded in a library of plasmid 73 vectors. These resources have been generated for several model organisms, including 74 humans, Escherichia coli, Caenorhabditis elegans, and Arabidopsis thaliana (18–23). 75 ORFeomes have also been developed for the fungal kingdom, including fission yeast 76 (18), budding yeast (24) and, most recently, the human pathogenic yeast Candida 77 albicans (8). Usually, ORFeomes are compatible with the Gateway® cloning 78 technology (Invitrogen), which enables rapid and high throughput recombinase-based 79 transfer of an ORF coding sequence to generate expression vectors (25, 26). 80 Community access to hundreds or thousands of such plasmids in a single library 81 enables highly flexible generation of expression vectors for high-throughput functional 82 genomic experiments. 83 The filamentous ascomycete fungus Zymoseptoria tritici (previously Mycosphaerella 84 graminicola) (27) causes Septoria tritici blotch, an important foliar disease of wheat 85 (28). Z. tritici is a significant threat to international food security, and even with access 86 to some resistant wheat cultivars and frequent fungicide applications, the estimated 3 bioRxiv preprint doi: https://doi.org/10.1101/582205; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 87 average yield losses due to this pathogen are still 10% (28). Even more strikingly, 88 approximately 70% of agricultural fungicides in Europe are deployed to control just this 89 single disease (29), which likely drives triazole resistance in fungal pathogens of 90 humans as well as plants (30). These challenges are compounded by very high levels 91 of genome plasticity and gene flow between populations of Z. tritici (31, 32). While 92 recent efforts have characterized the underlying cellular biology and infectious growth 93 (33, 34), transcriptionally deployed secondary metabolite loci (35, 36), and 94 components of the secreted effector arsenal [37-40], the vast majority of genes and 95 encoded proteins remain uncharacterized in the laboratory (27). 96 Recently, there has been a community-wide effort to develop numerous tools, 97 techniques, and resources for Z. tritici. This research toolkit includes mutants in the 98 non-homologous end joining pathway for highly efficient gene targeting (41), 99 optimization of conditional expression systems (42), a range of fluorescent 100 translational gene fusion for sub-cellular localization studies (43, 44), optimized 101 virulence assays (45), and a suite of Gateway® Destination vectors (46, 47). These 102 Gateway® destination vectors have been validated using a pilot Gateway® Entry 103 library to generate 32 over-expression mutants, demonstrating the role of a fungal 104 specific transcription factor for in vitro hyphal growth (48). 105 In this study, we report the generation of an improved functional genomics community 106 resource to supplement these tools, by generating a Gateway® compatible Z. tritici 107 ORFeome, which to our knowledge is the first such library for a plant infecting fungus. 108 This library is compatible with numerous Gateway® destination vectors that have 109 multiple functionality in Z. tritici, including numerous selection markers, epitope tags, 110 and promoters (26, 47). For ORFeome construction, we firstly screened the IP0323 111 reference genome for high confidence gene models, yielding 4075 candidate ORFs 112 from a possible 10,933 predicted genes. These were PCR amplified from genomic 113 DNA and cloned into the Gateway® Entry vector pDONR207. Quality of ORF 114 sequences was verified by a combination of Sanger and Illumina sequencing, yielding 115 3022 plasmids that passed quality control checks with 100% sequence verification. 116 The Z. tritici ORFeome described in this study is freely available to the research 117 community. This resource can be rapidly utilized to interrogate the broadest aspects 118 of Z. tritici biology, including identification of novel drug targets, mechanisms of drug 4 bioRxiv preprint doi: https://doi.org/10.1101/582205; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 119 detoxification and resistance, and pathogen virulence factors, which may ultimately 120 enable development of new disease control strategies. 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 5 bioRxiv preprint doi: https://doi.org/10.1101/582205; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Recommended publications
  • Global Mapping of Herpesvirus-‐Host Protein Complexes Reveals a Novel Transcription
    Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Infectious Disease and Immunity in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Britt A. Glaunsinger, Chair Professor Laurent Coscoy Professor Qiang Zhou Spring 2015 Abstract Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis Doctor of Philosophy in Infectious Diseases and Immunity University of California, Berkeley Professor Britt A. Glaunsinger, Chair Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 high-confidence virus-host interactions. KSHV causes AIDS-associated cancers and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. This work revealed many new interactions between viral and host proteins. I have focused on one interaction in particular, that of a previously uncharacterized KSHV protein, ORF24, with cellular RNA polymerase II (RNAP II). All DNA viruses encode a class of genes that are expressed only late in the infectious cycle, following replication of the viral genome.
    [Show full text]
  • Identification of Lpta, Lpxe, and Lpxo, Three Genes
    Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope Raquel Conde-Alvarez, Leyre Palacios-Chaves, Yolanda Gil-Ramirez, Miriam Salvador-Bescos, Marina Barcena-Varela, Beatriz Aragon-Aranda, Estrella Martinez-Gomez, Amaia Zuniga-Ripa, Maria J. Miguel, Toby Leigh Bartholomew, et al. To cite this version: Raquel Conde-Alvarez, Leyre Palacios-Chaves, Yolanda Gil-Ramirez, Miriam Salvador-Bescos, Ma- rina Barcena-Varela, et al.. Identification of lptA, lpxE, and lpxO, Three Genes Involved inthe Remodeling of Brucella Cell Envelope. Frontiers in Microbiology, Frontiers Media, 2018, 8, pp.2657. 10.3389/fmicb.2017.02657. hal-02118051 HAL Id: hal-02118051 https://hal.archives-ouvertes.fr/hal-02118051 Submitted on 21 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-08-02657 January 9, 2018 Time: 16:56 # 1 ORIGINAL RESEARCH published: 10 January 2018 doi: 10.3389/fmicb.2017.02657 Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope Raquel Conde-Álvarez1, Leyre Palacios-Chaves2, Yolanda Gil-Ramírez1, Miriam Salvador-Bescós1, Marina Bárcena-Varela1, Beatriz Aragón-Aranda1, Estrella Martínez-Gómez1, Amaia Zúñiga-Ripa1, María J.
    [Show full text]
  • Annual Report 2010 Contents
    Annual Report 2010 Contents Vice-Chancellor’s introduction 1 Investing in success 3 Research that makes a difference 5 Research highlights 7 A top 10 student experience 11 Truly world class 13 Creating a world-class university together 15 Responsible, sustainable and ethical 17 Governance 19 Sport and wellness 21 Students’ Guild 23 People 24 Facts at a glance 28 Our mission inside back cover Cover: The new Business School building. The year at a glance • Exeter was ranked among the top 200 universities in the • The ongoing £275 million capital development programme world for the first time, coming 184th in theTHE World on the Streatham Campus progressed well. New University Rankings. student accommodation at Birks and Duryard, the INTO international students centre on Stocker Road, the new • We were ranked among the top 100 fastest-growing Business School building and Biosciences refurbishment organisations in Europe and top 25 in the UK in a survey were all delivered by the early part of 2011. by business analysts Dun and Bradstreet. • At our Cornwall Campus, the Environment and • We are proposing to charge a £9,000 UK and European Sustainability Institute won formal approval, securing Union undergraduate fee across all programmes for new £30 million in investment from the European Regional entrants from September 2012. Nobody from these areas Development Fund, the South West RDA, HEFCE and has to pay anything upfront and we will have a generous the University. scheme of bursaries and fee waivers in place. This will enable us to continue to provide a student experience • The Students’ Guild was officially recognised as the best of the highest quality and more fully fund widening student union in the UK in the 2010 NUS Awards.
    [Show full text]
  • A Trypanosoma Brucei Orfeome-Based Gain-Of-Function Library
    bioRxiv preprint doi: https://doi.org/10.1101/849042; this version posted November 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 A Trypanosoma brucei ORFeome-based Gain-of-Function Library 3 reveals novel genes associated with melarsoprol resistance 4 5 Carter M1†, Kim HS2†, Gomez S1, Gritz S1, Larson S1, Schulz D3*, Hovel-Miner GA1* 6 7 † - Co-first 8 * - Co-corresponding 9 10 1) The George Washington University 11 Department of Microbiology, Immunology, and Tropical Medicine 12 2300 Eye St., Washington, D.C, 20037 13 [email protected] 14 2) The Public Health Research Institute at the International Center for Public Health 15 New Jersey Medical School – Rutgers, The State University of New Jersey 16 225 Warren Street, Newark, NJ 07103-3535 17 [email protected] 18 3) Harvey Mudd College 19 Department of Biology 20 1250 N. Dartmouth Ave. 21 Claremont, CA 91711 22 [email protected] 23 bioRxiv preprint doi: https://doi.org/10.1101/849042; this version posted November 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 LIST OF ACRONYMS AND ABBREVIATIONS 25 ORF – Open reading frame 26 RIT – RNA-Interference Targeted 27 GOF – Gain-of-Function 28 RFU – Relative fluorescence units 29 DOX – doxycycline 30 SM – Single marker 31 LP – Landing pad 32 NGS – Next generation sequencing 33 GSH1 – g-glutamylcysteine synthetase 34 TR – Trypanothione reductase 35 T(SH)2 – Trypanothione 36 GSH2 – glutathione synthetase 37 ODC – Ornithine decarboxylase 38 TXN – Tryparedoxin 39 RR – Ribonucleotide reductase 40 41 42 43 44 45 46 bioRxiv preprint doi: https://doi.org/10.1101/849042; this version posted November 20, 2019.
    [Show full text]
  • Wormbase As an Integrated Platform for the C. Elegans Orfeome
    Downloaded from genome.cshlp.org on November 6, 2017 - Published by Cold Spring Harbor Laboratory Press CORE Metadata, citation and similar papers at core.ac.uk Provided by Cold Spring Harbor Laboratory Institutional Repository Resource WormBase as an Integrated Platform for the C. elegans ORFeome Nansheng Chen,1,3 Daniel Lawson,2 Keith Bradnam,2 Todd W. Harris,1 and Lincoln D. Stein1 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 2The Wellcome Trust Sanger Institute, Hinxton, CB10 ISA United Kingdom The ORFeome project has validated and corrected a large number of predicted gene models in the nematode C. elegans, and has provided an enormous resource for proteome-scale studies. To make the resource useful to the research and teaching community, it needs to be integrated with other large-scale data sets, including the C. elegans genome, cell lineage, neurological wiring diagram, transcriptome, and gene expression map. This integration is also critical because the ORFeome data sets, like other ‘omics’ data sets, have significant false-positive and false-negative rates, and comparison to related data is necessary to make confidence judgments in any given data point. WormBase, the central data repository for information about C. elegans and related nematodes, provides such a platform for integration. In this report, we will describe how C. elegans ORFeome data are deposited in the database, how they are used to correct gene models, how they are integrated and displayed in the context of other data sets at the WormBase Web site, and how WormBase establishes connection with the reagent-based resources at the ORFeome project Web site.
    [Show full text]
  • A Massively Parallel Barcoded Sequencing Pipeline Enables Generation of the First Orfeome and Interactome Map for Rice
    A massively parallel barcoded sequencing pipeline enables generation of the first ORFeome and interactome map for rice Shayne D. Wierbowskia,b,1, Tommy V. Vob,1,2, Pascal Falter-Braunc,d, Timothy O. Jobee, Lars H. Krusef, Xiaomu Weia, Jin Liangb, Michael J. Meyera,b, Nurten Akturkb, Christen A. Rivera-Erickb, Nicolas A. Corderob, Mauricio I. Paramob,g, Elnur E. Shayhidinb, Marta Bertolottib, Nathaniel D. Tippensa,b, Kazi Aktherh, Rita Sharmai, Yuichi Katayosej, Kourosh Salehi-Ashtianik,l,m,n, Tong Haol,m, Pamela C. Ronaldo,p,q, Joseph R. Eckerr,s, Peter A. Schweitzert, Shoshi Kikuchiu, Hiroshi Mizunov, David E. Hilll,m, Marc Vidall,m, Gaurav D. Moghef, Susan R. McCouchh,3, and Haiyuan Yua,b,3 aDepartment of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853; bWeill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853; cInstitute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany; dMicrobe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; eBotanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany; fPlant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853; gDepartment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; hSection of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853-1901; iSchool
    [Show full text]
  • Chitosan Inhibits Septin‐Mediated Plant Infection by the Rice Blast
    Full Paper Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner Federico Lopez-Moya1 , Magdalena Martin-Urdiroz2 , Miriam Oses-Ruiz2,3 , Vincent M. Were2,3 , Mark D. Fricker4 , George Littlejohn2,5 , Luis V. Lopez-Llorca1 and Nicholas J. Talbot2,3 1Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante 03690, Spain; 2School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK; 3The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; 4Department of Plant Science, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK; 5School of Biological and Marine Sciences, Plymouth University, Portland Square Building Room A404, Drake Circus, Plymouth, PL4 8AA, UK Summary Author for correspondence: Chitosan is a partially deacetylated linear polysaccharide composed of b-1,4-linked units of Nicholas J. Talbot D-glucosamine and N-acetyl glucosamine. As well as a structural component of fungal cell Email: [email protected] walls, chitosan is a potent antifungal agent. However, the mode of action of chitosan is poorly understood. Received: 16 May 2020 Here, we report that chitosan is effective for control of rice blast disease. Chitosan applica- Accepted: 25 January 2021 tion impairs growth of the blast fungus Magnaporthe oryzae and has a pronounced effect on appressorium-mediated plant infection. Chitosan inhibits septin-mediated F-actin remodelling New Phytologist (2021) 230: 1578–1593 at the appressorium pore, thereby preventing repolarization of the infection cell. doi: 10.1111/nph.17268 Chitosan causes plasma membrane permeabilization of M.
    [Show full text]
  • Horfeome V3.1: a Resource of Human Open Reading Frames Representing Over 10,000 Human Genes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 89 (2007) 307–315 www.elsevier.com/locate/ygeno hORFeome v3.1: A resource of human open reading frames representing over 10,000 human genes Philippe Lamesch a,b, Ning Li a, Stuart Milstein a, Changyu Fan a, Tong Hao a, Gabor Szabo a,c, Zhenjun Hu d, Kavitha Venkatesan a, Graeme Bethel e, Paul Martin e, Jane Rogers e, Stephanie Lawlor e, Stuart McLaren e, Amélie Dricot a,b, Heather Borick a, Michael E. Cusick a, ⁎ ⁎ Jean Vandenhaute b, Ian Dunham e, David E. Hill a, , Marc Vidal a, a Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA b Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium c Department of Physics and Center for Complex Network Research, University of Notre Dame, Notre Dame, IN 46556, USA d Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA e The Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK Received 28 September 2006; accepted 21 November 2006 Abstract Complete sets of cloned protein-encoding open reading frames (ORFs), or ORFeomes, are essential tools for large-scale proteomics and systems biology studies. Here we describe human ORFeome version 3.1 (hORFeome v3.1), currently the largest publicly available resource of full-length human ORFs (available at www.openbiosystems.com). Generated by Gateway recombinational cloning, this collection contains 12,212 ORFs, representing 10,214 human genes, and corresponds to a 51% expansion of the original hORFeome v1.1.
    [Show full text]
  • C/EBP ∆Uorf Mice – a Genetic Model for Uorf-Mediated Translational Control in Mammals
    Aus dem Max-Delbrück-Centrum für molekulare Medizin C/EBP uORF mice – a genetic model for uORF-mediated translational control in mammals Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Dr. med. Klaus Wethmar Präsident der Humboldt-Universität zu Berlin Prof. Dr. Dr. h.c. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Andreas Herrmann Gutachter: 1. Prof. Dr. Achim Leutz 2. Prof. Dr. Claus Scheidereit 3. Prof. Dr. Thomas Sommer Tag der mündlichen Prüfung: 28. März 2011 Table of contents Table of contents 2 Zusammenfassung 4 Abstract 5 Dedication 7 List of abbreviations 8 1 Introduction 11 1.1 Translational regulation of protein expression 11 1.1.1 Mechanisms of translational control 11 1.1.2 Translational control by upstream open reading frames 14 1.1.2.1 Variable presence of uORFs in alternative transcripts 15 1.1.2.2 Length, position and initiation codon context 15 1.1.2.3 Upstream ORFs integrate the general translational status of a cell 17 1.1.2.4 Upstream ORF-encoded peptides 18 1.1.2.5 Nonsense-mediated mRNA decay 19 1.1.2.6 Variables affecting the degree of uORF-mediated MCS repression 20 1.2 CCAAT/enhancer binding proteins 21 1.2.1 Family overview 21 1.2.2 Isoform-specific functions of C/EBP transcription factors 24 1.2.3 Upstream ORF-mediated control of C/EBP isoform expression 26 1.3 Aims of the thesis 29 2 Materials and Methods
    [Show full text]
  • Pseudomonas Aeruginosa PA01 Gene Collection
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Resource The Pseudomonas aeruginosa PA01 Gene Collection Joshua LaBaer,1 QingQing Qiu,1 Anukanth Anumanthan,2 Wenhong Mar,1 Dongmei Zuo,1 T.V.S. Murthy,1 Helen Taycher,1 Allison Halleck,1 Eugenie Hainsworth,1 Stephen Lory,2 and Leonardo Brizuela1,3 1Department of Biological Chemistry and Molecular Pharmacology and 2Department of Microbiology, Harvard Medical School, Institute of Proteomics, Cambridge, Massachusetts 02141, USA Pseudomonas aeruginosa, a common inhabitant of soil and water, is an opportunistic pathogen of growing clinical relevance. Its genome, one of the largest among bacteria [5570 open reading frames (ORFs)] approaches that of simple eukaryotes. We have constructed a comprehensive gene collection for this organism utilizing the annotated genome of P. aeruginosa PA01 and a highly automated and laboratory information management system (LIMS)- supported production line. All the individual ORFs have been successfully PCR-amplified and cloned into a recombination-based cloning system. We have isolated and archived four independent isolates of each individual ORF. Full sequence analysis of the first isolate for one-third of the ORFs in the collection has been completed. We used two sets of genes from this repository for high-throughput expression and purification of recombinant proteins in different systems. The purified proteins have been used to set up biochemical and immunological assays directed towards characterization of histidine kinases and identification of bacterial proteins involved in the immune response of cystic fibrosis patients. This gene repository provides a powerful tool for proteome- and genome-scale research of this organism, and the strategies adopted to generate this repository serve as a model for building clone sets for other bacteria.
    [Show full text]
  • Report to Donors 2007/08 Contents
    Report to Donors 2007/08 Contents 1 Vice-Chancellor’s message of thanks 2 A fantastic year 4 How gifts are making a difference 6 Gift helps to fight world hunger 10 An enduring legacy It is a source of great pride for me to support the University 14 Funding the arts of Exeter. I hope an increasing number of alumni and friends ‘‘ will be inspired to support the University as it goes from 16 Our Annual Fund telethon strength to strength. 18 Alumni make a difference Nicholas Bull (Chemistry 1973) Chairman of the Fundraising Campaign Board 20 Be inspired ’’ Professor Steve Smith, Vice-Chancellor of the University of Exeter, with the 2008 Vice-Chancellor’s Excellence Scholarship undergraduates. Dear Friends, It is wonderful to see so many names in this year’s donor list. I would like to say thank you to everyone who has supported the University of Exeter during the year. 2007/08 has been a fantastic year for fundraising with more than £3.75 million raised in donations and pledges. ese are very exciting times for the University of Exeter. We have continued our rise up the UK university league tables, coming 13th in e Times ranking (out of 120 listed universities) and fourth for student satisfaction. We were also awarded the 2007/08 University of the Year by e Times Higher Education . I am very proud of our achievements to date, but we cannot afford to rest on our laurels. Our next aim is to break in to the top 10 universities in the UK by 2012.
    [Show full text]
  • Npgrj NMETH 1224 597..600
    BRIEF COMMUNICATIONS ‘isoform space’ in more complex organisms may partly explain the Isoform discovery by paradoxical lack of correlation between organismal complexity and gene number, and underscores the need to efficiently and compre- targeted cloning, ‘deep- hensively capture the full ORFeome. Historically, determination of intron-exon boundaries in eukaryotes has been addressed mainly methods well’ pooling and parallel by large-scale sequencing of random cDNAs (expressed sequence tags; ESTs) followed by alignment to a reference genomic DNA sequencing sequence. Although EST collections are extremely helpful, the human isoform space remains underexplored. A targeted cloning .com/nature e Kourosh Salehi-Ashtiani1,2,5, Xinping Yang1,2,5, and full-length sequencing strategy could provide the desired Adnan Derti1,3,5, Weidong Tian1,3,5, Tong Hao1,2,5, information but is impractically resource-intensive. .natur 1,2 4 4 Next-generation parallel sequencing technologies, such as the w Chenwei Lin , Kathryn Makowski , Lei Shen , Roche 454 FLX, offer the prospect of sequencing at a much faster Ryan R Murray1,2, David Szeto1,2, Nadeem Tusneem4, 4 1,2 1,2 pace and lower cost than conventional Sanger sequencing–based Douglas R Smith ,MichaelECusick ,DavidEHill , capillary platforms3. Most applications described so far have entailed http://ww 1,3 1,2 Frederick P Roth & Marc Vidal resequencing of megabase-scale genomic DNA fragments4–7 or of small sequence tags8–11. A disadvantage of the latter approach is that oup r Describing the ‘ORFeome’ of an organism, including all major G cis connectivity is lost between the reads; therefore, although the isoforms, is essential for a system-level understanding of reads can be assembled into contigs, mRNAs cannot be assembled any species; however, conventional cloning and sequencing unambiguously when splice variants are involved.
    [Show full text]