Identification of Lpta, Lpxe, and Lpxo, Three Genes

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Lpta, Lpxe, and Lpxo, Three Genes Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope Raquel Conde-Alvarez, Leyre Palacios-Chaves, Yolanda Gil-Ramirez, Miriam Salvador-Bescos, Marina Barcena-Varela, Beatriz Aragon-Aranda, Estrella Martinez-Gomez, Amaia Zuniga-Ripa, Maria J. Miguel, Toby Leigh Bartholomew, et al. To cite this version: Raquel Conde-Alvarez, Leyre Palacios-Chaves, Yolanda Gil-Ramirez, Miriam Salvador-Bescos, Ma- rina Barcena-Varela, et al.. Identification of lptA, lpxE, and lpxO, Three Genes Involved inthe Remodeling of Brucella Cell Envelope. Frontiers in Microbiology, Frontiers Media, 2018, 8, pp.2657. 10.3389/fmicb.2017.02657. hal-02118051 HAL Id: hal-02118051 https://hal.archives-ouvertes.fr/hal-02118051 Submitted on 21 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-08-02657 January 9, 2018 Time: 16:56 # 1 ORIGINAL RESEARCH published: 10 January 2018 doi: 10.3389/fmicb.2017.02657 Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope Raquel Conde-Álvarez1, Leyre Palacios-Chaves2, Yolanda Gil-Ramírez1, Miriam Salvador-Bescós1, Marina Bárcena-Varela1, Beatriz Aragón-Aranda1, Estrella Martínez-Gómez1, Amaia Zúñiga-Ripa1, María J. de Miguel3, Toby Leigh Bartholomew4, Sean Hanniffy5, María-Jesús Grilló2, Miguel Ángel Vences-Guzmán6, José A. Bengoechea4, Vilma Arce-Gorvel5, Jean-Pierre Gorvel5, Ignacio Moriyón1* and Maite Iriarte1* Edited by: 1 Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical Axel Cloeckaert, (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain, 2 Instituto de Agrobiotecnología, Institut National de la Recherche Consejo Superior de Investigaciones Científicas – Universidad Pública de Navarra – Gobierno de Navarra, Pamplona, Spain, Agronomique (INRA), France 3 Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Reviewed by: Agroalimentaria de Aragón – Universidad de Zaragoza, Zaragoza, Spain, 4 Wellcome-Wolfson Institute for Experimental Diego J. Comerci, Medicine, Queen’s University Belfast, Belfast, United Kingdom, 5 Institut National de la Santé et de la Recherche Médicale, Instituto de Investigaciones U1104, Centre National de la Recherche Scientifique UMR7280, Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Biotecnológicas (IIB-INTECH), University UM2, Marseille, France, 6 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Argentina Cuernavaca, Mexico Roy Martin Roop II, East Carolina University, United States The brucellae are facultative intracellular bacteria that cause a worldwide extended *Correspondence: Ignacio Moriyón zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to [email protected] avoid rapid recognition by innate immunity because of a reduction of the pathogen- Maite Iriarte [email protected] associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE, and Specialty section: lpxO, three genes that in some pathogens encode enzymes that mask the LPS This article was submitted to Infectious Diseases, PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA, which a section of the journal encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but Frontiers in Microbiology not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Received: 26 October 2017 Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA Accepted: 20 December 2017 Published: 10 January 2018 mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to Citation: polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus Conde-Álvarez R, Palacios-Chaves L, carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a Gil-Ramírez Y, Salvador-Bescos M, Bárcena-Varela M, Aragón-Aranda B, putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all Martínez-Gómez E, Zúñiga-Ripa A, brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, de Miguel MJ, Bartholomew TL, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the Hanniffy S, Grilló M-J, Vences-Guzmán MÁ, existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Bengoechea JA, Arce-Gorvel V, Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae Gorvel J-P, Moriyón I and Iriarte M (2018) Identification of lptA, lpxE, except B. microti and is intact in O. anthropi. Free-lipid analysis revealed that lpxO and lpxO, Three Genes Involved corresponded to olsC, the gene coding for the ornithine lipid (OL) acyl hydroxylase in the Remodeling of Brucella Cell active in O. anthropi and B. microti, while B. abortus carrying the olsC of O. anthropi Envelope. Front. Microbiol. 8:2657. doi: 10.3389/fmicb.2017.02657 and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE, or olsC Frontiers in Microbiology| www.frontiersin.org 1 January 2018| Volume 8| Article 2657 fmicb-08-02657 January 9, 2018 Time: 16:56 # 2 Conde-Álvarez et al. Genes Remodeling Brucella Cell Envelope were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL b-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life. Keywords: lipopolysaccharide, Brucella, lipids, cell envelope, PAMP INTRODUCTION is a eukaryotic-type phospholipid required for Brucella full virulence (Comerci et al., 2006; Conde-Alvarez et al., 2006). Brucellosis is the collective name of a group of zoonotic Among the amino lipids, only the ornithine lipids (OL) have diseases afflicting a wide range of domestic and wild mammals been investigated which unlike their counterparts in Bordetella, (Whatmore, 2009; Zheludkov and Tsirelson, 2010). In domestic do not trigger the release of IL-6 or TNF-a by macrophages, livestock brucellosis is manifested mostly as abortions and possibly on account of their longer acyl chains that reduce the OL infertility, and contact with infected animals and consumption PAMP (Palacios-Chaves et al., 2011). Concerning the LPS, most of unpasteurized dairy products are the sources of human bacteria carry C1 and C40 glucosamine disaccharides with C12 brucellosis, an incapacitating condition that requires prolonged and C14 acyl and acyl-oxyacyl chains. This highly amphipathic antibiotic treatment (Zinsstag et al., 2011). Eradicated in a structure, named lipid A, is adjacent to additional negatively handful of countries, brucellosis is endemic or even increasing in charged groups of the core oligosaccharide, namely the heptose many areas of the world (Jones et al., 2013; Ducrotoy et al., 2017; phosphates and 2-keto-3-deoxyoctulosonate carboxyl groups Lai et al., 2017). (Kastowsky et al., 1992; Moriyón, 2003). This lipid A-core PAMP This disease is caused by facultative intracellular parasites is so efficiently detected by the innate immunity system that some of the genus Brucella. Taxonomically placed in the a-2 pathogens partially conceal it by removing phosphate groups or Proteobacteria (Moreno et al., 1990), the brucellae are close substituting them with arabinosamine and/or ethanolamine, or to plant pathogens and endosymbionts such as Agrobacterium, by hydroxylating the acyl chains (Takahashi et al., 2008; Lewis Sinorhizobium, and Rhizobium and to soil bacteria such et al., 2013; Moreira et al., 2013; Needham and Trent, 2013; Llobet as Ochrobactrum, the latter including some opportunistic et al., 2015; Trombley et al., 2015). In contrast, Brucella lipid pathogens, and comparative analyses suggest that soil bacteria A is a diaminoglucose disaccharide amide-linked to long (C16, of this group are endowed with properties that represent a first C18) and very long (C28–C30) acyl chains (Velasco et al., 2000; scaffold on which an intracellular life style develops (Velasco Iriarte et al., 2004; Fontana et al., 2016). Furthermore, negative et al., 2000; Moreno and Moriyón, 2007; Barquero-Calvo et al., charges in lipid A phosphates and 2-keto-3-deoxyoctulosonate 2009). The brucellae owe their pathogenicity mainly to their are counterbalanced by four glucosamine units present in the ability to multiply within dendritic cells, macrophages, and a core (Kubler-Kielb and Vinogradov, 2013; Fontana et al., 2016). variety of other cells. Due to their ability to control intracellular As illustrated by the unusually reduced endotoxicity of the
Recommended publications
  • Global Mapping of Herpesvirus-‐Host Protein Complexes Reveals a Novel Transcription
    Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Infectious Disease and Immunity in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Britt A. Glaunsinger, Chair Professor Laurent Coscoy Professor Qiang Zhou Spring 2015 Abstract Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis Doctor of Philosophy in Infectious Diseases and Immunity University of California, Berkeley Professor Britt A. Glaunsinger, Chair Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 high-confidence virus-host interactions. KSHV causes AIDS-associated cancers and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. This work revealed many new interactions between viral and host proteins. I have focused on one interaction in particular, that of a previously uncharacterized KSHV protein, ORF24, with cellular RNA polymerase II (RNAP II). All DNA viruses encode a class of genes that are expressed only late in the infectious cycle, following replication of the viral genome.
    [Show full text]
  • A Trypanosoma Brucei Orfeome-Based Gain-Of-Function Library
    bioRxiv preprint doi: https://doi.org/10.1101/849042; this version posted November 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 A Trypanosoma brucei ORFeome-based Gain-of-Function Library 3 reveals novel genes associated with melarsoprol resistance 4 5 Carter M1†, Kim HS2†, Gomez S1, Gritz S1, Larson S1, Schulz D3*, Hovel-Miner GA1* 6 7 † - Co-first 8 * - Co-corresponding 9 10 1) The George Washington University 11 Department of Microbiology, Immunology, and Tropical Medicine 12 2300 Eye St., Washington, D.C, 20037 13 [email protected] 14 2) The Public Health Research Institute at the International Center for Public Health 15 New Jersey Medical School – Rutgers, The State University of New Jersey 16 225 Warren Street, Newark, NJ 07103-3535 17 [email protected] 18 3) Harvey Mudd College 19 Department of Biology 20 1250 N. Dartmouth Ave. 21 Claremont, CA 91711 22 [email protected] 23 bioRxiv preprint doi: https://doi.org/10.1101/849042; this version posted November 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 LIST OF ACRONYMS AND ABBREVIATIONS 25 ORF – Open reading frame 26 RIT – RNA-Interference Targeted 27 GOF – Gain-of-Function 28 RFU – Relative fluorescence units 29 DOX – doxycycline 30 SM – Single marker 31 LP – Landing pad 32 NGS – Next generation sequencing 33 GSH1 – g-glutamylcysteine synthetase 34 TR – Trypanothione reductase 35 T(SH)2 – Trypanothione 36 GSH2 – glutathione synthetase 37 ODC – Ornithine decarboxylase 38 TXN – Tryparedoxin 39 RR – Ribonucleotide reductase 40 41 42 43 44 45 46 bioRxiv preprint doi: https://doi.org/10.1101/849042; this version posted November 20, 2019.
    [Show full text]
  • Wormbase As an Integrated Platform for the C. Elegans Orfeome
    Downloaded from genome.cshlp.org on November 6, 2017 - Published by Cold Spring Harbor Laboratory Press CORE Metadata, citation and similar papers at core.ac.uk Provided by Cold Spring Harbor Laboratory Institutional Repository Resource WormBase as an Integrated Platform for the C. elegans ORFeome Nansheng Chen,1,3 Daniel Lawson,2 Keith Bradnam,2 Todd W. Harris,1 and Lincoln D. Stein1 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 2The Wellcome Trust Sanger Institute, Hinxton, CB10 ISA United Kingdom The ORFeome project has validated and corrected a large number of predicted gene models in the nematode C. elegans, and has provided an enormous resource for proteome-scale studies. To make the resource useful to the research and teaching community, it needs to be integrated with other large-scale data sets, including the C. elegans genome, cell lineage, neurological wiring diagram, transcriptome, and gene expression map. This integration is also critical because the ORFeome data sets, like other ‘omics’ data sets, have significant false-positive and false-negative rates, and comparison to related data is necessary to make confidence judgments in any given data point. WormBase, the central data repository for information about C. elegans and related nematodes, provides such a platform for integration. In this report, we will describe how C. elegans ORFeome data are deposited in the database, how they are used to correct gene models, how they are integrated and displayed in the context of other data sets at the WormBase Web site, and how WormBase establishes connection with the reagent-based resources at the ORFeome project Web site.
    [Show full text]
  • The Zymoseptoria Tritici Orfeome: a Functional Genomics
    bioRxiv preprint doi: https://doi.org/10.1101/582205; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 The Zymoseptoria tritici ORFeome: a functional genomics 2 community resource 3 4 Yogesh Chaudhari*,a, Timothy C. Cairns*,b, Yaadwinder Sidhua, Victoria Attaha, 5 Graham Thomasa, Michael Csukaic, Nicholas J. Talbotd, David J. Studholmea,e, Ken 6 Haynesa,f. 7 *Authors contributed equally to this study 8 aBiosciences, University of Exeter, Exeter EX4 4QD, United Kingdom 9 bCurrent address; Tianjin Institute of Industrial Biotechnology, Chinese Academy of 10 Sciences, Tianjin, 300308, China 11 cSyngenta, Jealott’s Hill International Research Centre, Bracknell, RG42 6EY 12 dCurrent address; The Sainsbury Laboratory, University of East Anglia, Norwich 13 Research Park, NR47UH, United Kingdom 14 eCorresponding author ([email protected]) 15 fAuthor deceased 16 Emails: 17 [email protected] 18 [email protected] 19 [email protected] 20 [email protected] 21 [email protected] 22 [email protected] 23 [email protected] 24 [email protected] 25 1 bioRxiv preprint doi: https://doi.org/10.1101/582205; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A Massively Parallel Barcoded Sequencing Pipeline Enables Generation of the First Orfeome and Interactome Map for Rice
    A massively parallel barcoded sequencing pipeline enables generation of the first ORFeome and interactome map for rice Shayne D. Wierbowskia,b,1, Tommy V. Vob,1,2, Pascal Falter-Braunc,d, Timothy O. Jobee, Lars H. Krusef, Xiaomu Weia, Jin Liangb, Michael J. Meyera,b, Nurten Akturkb, Christen A. Rivera-Erickb, Nicolas A. Corderob, Mauricio I. Paramob,g, Elnur E. Shayhidinb, Marta Bertolottib, Nathaniel D. Tippensa,b, Kazi Aktherh, Rita Sharmai, Yuichi Katayosej, Kourosh Salehi-Ashtianik,l,m,n, Tong Haol,m, Pamela C. Ronaldo,p,q, Joseph R. Eckerr,s, Peter A. Schweitzert, Shoshi Kikuchiu, Hiroshi Mizunov, David E. Hilll,m, Marc Vidall,m, Gaurav D. Moghef, Susan R. McCouchh,3, and Haiyuan Yua,b,3 aDepartment of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853; bWeill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853; cInstitute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany; dMicrobe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; eBotanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany; fPlant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853; gDepartment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; hSection of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853-1901; iSchool
    [Show full text]
  • Horfeome V3.1: a Resource of Human Open Reading Frames Representing Over 10,000 Human Genes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 89 (2007) 307–315 www.elsevier.com/locate/ygeno hORFeome v3.1: A resource of human open reading frames representing over 10,000 human genes Philippe Lamesch a,b, Ning Li a, Stuart Milstein a, Changyu Fan a, Tong Hao a, Gabor Szabo a,c, Zhenjun Hu d, Kavitha Venkatesan a, Graeme Bethel e, Paul Martin e, Jane Rogers e, Stephanie Lawlor e, Stuart McLaren e, Amélie Dricot a,b, Heather Borick a, Michael E. Cusick a, ⁎ ⁎ Jean Vandenhaute b, Ian Dunham e, David E. Hill a, , Marc Vidal a, a Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA b Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium c Department of Physics and Center for Complex Network Research, University of Notre Dame, Notre Dame, IN 46556, USA d Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA e The Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK Received 28 September 2006; accepted 21 November 2006 Abstract Complete sets of cloned protein-encoding open reading frames (ORFs), or ORFeomes, are essential tools for large-scale proteomics and systems biology studies. Here we describe human ORFeome version 3.1 (hORFeome v3.1), currently the largest publicly available resource of full-length human ORFs (available at www.openbiosystems.com). Generated by Gateway recombinational cloning, this collection contains 12,212 ORFs, representing 10,214 human genes, and corresponds to a 51% expansion of the original hORFeome v1.1.
    [Show full text]
  • C/EBP ∆Uorf Mice – a Genetic Model for Uorf-Mediated Translational Control in Mammals
    Aus dem Max-Delbrück-Centrum für molekulare Medizin C/EBP uORF mice – a genetic model for uORF-mediated translational control in mammals Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Dr. med. Klaus Wethmar Präsident der Humboldt-Universität zu Berlin Prof. Dr. Dr. h.c. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Andreas Herrmann Gutachter: 1. Prof. Dr. Achim Leutz 2. Prof. Dr. Claus Scheidereit 3. Prof. Dr. Thomas Sommer Tag der mündlichen Prüfung: 28. März 2011 Table of contents Table of contents 2 Zusammenfassung 4 Abstract 5 Dedication 7 List of abbreviations 8 1 Introduction 11 1.1 Translational regulation of protein expression 11 1.1.1 Mechanisms of translational control 11 1.1.2 Translational control by upstream open reading frames 14 1.1.2.1 Variable presence of uORFs in alternative transcripts 15 1.1.2.2 Length, position and initiation codon context 15 1.1.2.3 Upstream ORFs integrate the general translational status of a cell 17 1.1.2.4 Upstream ORF-encoded peptides 18 1.1.2.5 Nonsense-mediated mRNA decay 19 1.1.2.6 Variables affecting the degree of uORF-mediated MCS repression 20 1.2 CCAAT/enhancer binding proteins 21 1.2.1 Family overview 21 1.2.2 Isoform-specific functions of C/EBP transcription factors 24 1.2.3 Upstream ORF-mediated control of C/EBP isoform expression 26 1.3 Aims of the thesis 29 2 Materials and Methods
    [Show full text]
  • Pseudomonas Aeruginosa PA01 Gene Collection
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Resource The Pseudomonas aeruginosa PA01 Gene Collection Joshua LaBaer,1 QingQing Qiu,1 Anukanth Anumanthan,2 Wenhong Mar,1 Dongmei Zuo,1 T.V.S. Murthy,1 Helen Taycher,1 Allison Halleck,1 Eugenie Hainsworth,1 Stephen Lory,2 and Leonardo Brizuela1,3 1Department of Biological Chemistry and Molecular Pharmacology and 2Department of Microbiology, Harvard Medical School, Institute of Proteomics, Cambridge, Massachusetts 02141, USA Pseudomonas aeruginosa, a common inhabitant of soil and water, is an opportunistic pathogen of growing clinical relevance. Its genome, one of the largest among bacteria [5570 open reading frames (ORFs)] approaches that of simple eukaryotes. We have constructed a comprehensive gene collection for this organism utilizing the annotated genome of P. aeruginosa PA01 and a highly automated and laboratory information management system (LIMS)- supported production line. All the individual ORFs have been successfully PCR-amplified and cloned into a recombination-based cloning system. We have isolated and archived four independent isolates of each individual ORF. Full sequence analysis of the first isolate for one-third of the ORFs in the collection has been completed. We used two sets of genes from this repository for high-throughput expression and purification of recombinant proteins in different systems. The purified proteins have been used to set up biochemical and immunological assays directed towards characterization of histidine kinases and identification of bacterial proteins involved in the immune response of cystic fibrosis patients. This gene repository provides a powerful tool for proteome- and genome-scale research of this organism, and the strategies adopted to generate this repository serve as a model for building clone sets for other bacteria.
    [Show full text]
  • Npgrj NMETH 1224 597..600
    BRIEF COMMUNICATIONS ‘isoform space’ in more complex organisms may partly explain the Isoform discovery by paradoxical lack of correlation between organismal complexity and gene number, and underscores the need to efficiently and compre- targeted cloning, ‘deep- hensively capture the full ORFeome. Historically, determination of intron-exon boundaries in eukaryotes has been addressed mainly methods well’ pooling and parallel by large-scale sequencing of random cDNAs (expressed sequence tags; ESTs) followed by alignment to a reference genomic DNA sequencing sequence. Although EST collections are extremely helpful, the human isoform space remains underexplored. A targeted cloning .com/nature e Kourosh Salehi-Ashtiani1,2,5, Xinping Yang1,2,5, and full-length sequencing strategy could provide the desired Adnan Derti1,3,5, Weidong Tian1,3,5, Tong Hao1,2,5, information but is impractically resource-intensive. .natur 1,2 4 4 Next-generation parallel sequencing technologies, such as the w Chenwei Lin , Kathryn Makowski , Lei Shen , Roche 454 FLX, offer the prospect of sequencing at a much faster Ryan R Murray1,2, David Szeto1,2, Nadeem Tusneem4, 4 1,2 1,2 pace and lower cost than conventional Sanger sequencing–based Douglas R Smith ,MichaelECusick ,DavidEHill , capillary platforms3. Most applications described so far have entailed http://ww 1,3 1,2 Frederick P Roth & Marc Vidal resequencing of megabase-scale genomic DNA fragments4–7 or of small sequence tags8–11. A disadvantage of the latter approach is that oup r Describing the ‘ORFeome’ of an organism, including all major G cis connectivity is lost between the reads; therefore, although the isoforms, is essential for a system-level understanding of reads can be assembled into contigs, mRNAs cannot be assembled any species; however, conventional cloning and sequencing unambiguously when splice variants are involved.
    [Show full text]
  • Identifikation Und Charakterisierung Von Zellulären Zielproteinen Zur Antiviralen Therapie Der SARS-Coronavirus Infektion
    Aus dem Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie der Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. med. Dr. h.c. Ulrich Koszinowski Identifikation und Charakterisierung von zellulären Zielproteinen zur antiviralen Therapie der SARS-Coronavirus Infektion Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Julia Schöpf aus Schrobenhausen - 2011 - Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Betreuer: Prof. Dr. med. Dr. rer. nat. Jürgen Haas Zweitgutachter: Priv. Doz. Dr. Ursula Zimber-Strobl Dekan: Prof. Dr. med Dr. h.c. M. Reiser, FACR, FRCR Tag der mündlichen Prüfung: 29. November 2011 Ehrenwörtliche Versicherung Ich versichere hiermit ehrenwörtlich, dass die vorgelegte Dissertation von mir selbständig und ohne unerlaubte Hilfe angefertigt worden ist. München, den 03.03.2011 (Julia Schöpf) Erklärung Hiermit erkläre ich, - dass die Dissertation nicht ganz oder in wesentlichen Teilen einer anderen Prüfungskommission vorgelegt worden ist. - dass ich mich nicht anderweitig einer Doktorprüfung ohne Erfolg unterzogen habe. München, den 03.03.2011 (Julia Schöpf) für meine Eltern So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das Möglichste getan hat. J. W. Goethe, Italienische Reise, 16. März 1787 Inhalte dieser Arbeit wurden wie folgt veröffentlicht: THE SARS-CORONAVIRUS-HOST INTERACTOME: IDENTIFICATION OF CYCLOPHILINS AS TARGET FOR PAN-CORONAVIRUS INHIBITORS S. Pfefferle*, J. Schöpf *, M. Kögl*, C. C. Friedel, M. A. Müller, J. Carbajo-Lozoya, T. Stellberger, E. von Dall’armi, P. Herzog, S. Kallies, D. Niemeyer, V. Ditt, T. Kuri, R. Züst, K. Pumpor, R.
    [Show full text]
  • Hust S41598-020-72159-4.Pdf
    www.nature.com/scientificreports OPEN Pyruvate dehydrogenase complex—enzyme 2, a new target for Listeria spp. detection identifed using combined phage display technologies Gustavo Marçal Schmidt Garcia Moreira1, Sarah Mara Stella Köllner1, Saskia Helmsing1, Lothar Jänsch2, Anja Meier2, Sabine Gronow3, Christian Boedeker3, Stefan Dübel1, Marcelo Mendonça4, Ângela Nunes Moreira5, Fabricio Rochedo Conceição5 & Michael Hust1* The genus Listeria comprises ubiquitous bacteria, commonly present in foods and food production facilities. In this study, three diferent phage display technologies were employed to discover targets, and to generate and characterize novel antibodies against Listeria: antibody display for biomarker discovery and antibody generation; ORFeome display for target identifcation; and single-gene display for epitope characterization. With this approach, pyruvate dehydrogenase complex—enzyme 2 (PDC- E2) was defned as a new detection target for Listeria, as confrmed by immunomagnetic separation- mass spectrometry (IMS-MS). Immunoblot and fuorescence microscopy showed that this protein is accessible on the bacterial cell surface of living cells. Recombinant PDC-E2 was produced in E. coli and used to generate 16 additional antibodies. The resulting set of 20 monoclonal scFv-Fc was tested in indirect ELISA against 17 Listeria and 16 non-Listeria species. Two of them provided 100% sensitivity (CI 82.35–100.0%) and specifcity (CI 78.20–100.0%), confrming PDC-E2 as a suitable target for the detection of Listeria. The binding region of 18 of these antibodies was analyzed, revealing that ≈ 90% (16/18) bind to the lipoyl domains (LD) of the target. The novel target PDC-E2 and highly specifc antibodies against it ofer new opportunities to improve the detection of Listeria.
    [Show full text]
  • Revisiting the Saccharomyces Cerevisiae Predicted Orfeome
    Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Revisiting the Saccharomyces cerevisiae predicted ORFeome Qian-Ru Li,1,6 Anne-Ruxandra Carvunis,1,2,6 Haiyuan Yu,1,6 Jing-Dong J. Han,1,6,7 Quan Zhong,1 Nicolas Simonis,1 Stanley Tam,1 Tong Hao,1 Niels J. Klitgord,1 Denis Dupuy,1 Danny Mou,1 Ilan Wapinski,3,4 Aviv Regev,3,5 David E. Hill,1 Michael E. Cusick,1 and Marc Vidal1,8 1Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; 2TIMC-IMAG, CNRS UMR5525, Faculte´deMe´decine, 38706 La Tronche Cedex, France; 3Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; 4School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA; 5Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Accurately defining the coding potential of an organism, i.e., all protein-encoding open reading frames (ORFs) or “ORFeome,” is a prerequisite to fully understand its biology. ORFeome annotation involves iterative computational predictions from genome sequences combined with experimental verifications. Here we reexamine a set of Saccharomyces cerevisiae “orphan” ORFs recently removed from the original ORFeome annotation due to lack of conservation across evolutionarily related yeast species. We show that many orphan ORFs produce detectable transcripts and/or translated products in various functional genomics and proteomics experiments. By combining a naïve Bayes model that predicts the likelihood of an ORF to encode a functional product with experimental verification of strand-specific transcripts, we argue that orphan ORFs should still remain candidates for functional ORFs.
    [Show full text]