Download a PDF of This Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Invasive Alien Species Fact Sheet Phytophthora Ramorum
NOBANIS –Invasive Alien Species Fact Sheet Phytophthora ramorum Author of this species fact sheet: Anna Poimala and Arja Lilja, Finnish Forest Research Institute, Vantaa Research Unit, PO Box 18, 01301 Vantaa, Finland; +358 40 801 5377 ; [email protected] Bibliographical reference – how to cite this fact sheet: Poimala, A. & Lilja, A. (2013): NOBANIS – Invasive Alien Species Fact Sheet – Phytophthora ramorum . – From: Online Database of the European Network on Invasive Alien Species – NOBANIS www.nobanis.org , Date of access x/x/201x. Species description Scientific names: Phytophthora ramorum Werres, De Cock & Man in`t Veld, Oomycetes, Chromalveolata. Synonyms: None. Common names: Twig and leaf blight (EU), Ramorum leaf blight (North America), Sudden Oak Death= SOD (North America), tamme-äkksurm (EE), maladie de l’encre des chênes rouges (FR), mort subite du chêne (FR), tammen äkkikuolema (FI), europæisk visneskimmel (DK, European isolates) / californisk visneskimmel (DK, North American isolates), Plötslig ekdöd (SE), Plötzliches eichensterben (DE), Nagła śmier ć d ębu (POL). Fig 1 . Sporangia of Phytophthora ramorum in soil extract water, photo by Arja Lilja. 1 Fig 2 . Branched dendroid-like hyphae of Phytophthora ramorum on the bottom of an agar plate, photo by Arja Lilja. Fig 3. Clamydospore of Phytophthora ramorum , photo by Arja Lilja. Species identification Phytophthora ramorum is a heterothallic species characterized by abundant production of chlamydospores and elongate, ellipsoid, deciduous sporangia. The mean sporangium length was 43.6 µm ± 5.3 with a range from 20-79 µm, and the mean sporangium width 23.9 µm ± 2.6 with a range from 12-40 µm in measurements done by Werres and Kaminski (2005). -
Complete Chloroplast Genome of Japanese Larch (Larix Kaempferi): Insights Into Intraspecific Variation with an Isolated Northern Limit Population
Article Complete Chloroplast Genome of Japanese Larch (Larix kaempferi): Insights into Intraspecific Variation with an Isolated Northern Limit Population Shufen Chen 1, Wataru Ishizuka 2, Toshihiko Hara 3 and Susumu Goto 1,* 1 Education and Research Center, The University of Tokyo Forests, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] 2 Forestry Research Institute, Hokkaido Research Organization, Koushunai, Bibai, Hokkaido 079-0166, Japan; [email protected] 3 Institute of Low Temperature Science, Hokkaido University, Sapporo-city, Hokkaido 060-0819, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5841-5493 Received: 25 July 2020; Accepted: 11 August 2020; Published: 14 August 2020 Abstract: Research Highlights: The complete chloroplast genome for eight individuals of Japanese larch, including from the isolated population at the northern limit of the range (Manokami larch), revealed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed in Japanese larch. We detected intraspecific variation for possible candidate cpDNA markers in Japanese larch. Background and Objectives: The natural distribution of Japanese larch is limited to the mountainous range in the central part of Honshu Island, Japan, with an isolated northern limit population (Manokami larch). In this study, we determined the phylogenetic position of Manokami larch within Japanese larch, characterized the chloroplast genome of Japanese larch, detected intraspecific variation, and determined candidate cpDNA markers. Materials and Methods: The complete genome sequence was determined for eight individuals, including Manokami larch, in this study. -
7. PSEUDOLARIX Gordon, Pinetum 292. 1858, Nom. Cons. 金钱松属 Jin Qian Song Shu Chrysolarix H
Flora of China 4: 41–42. 1999. 7. PSEUDOLARIX Gordon, Pinetum 292. 1858, nom. cons. 金钱松属 jin qian song shu Chrysolarix H. E. Moore; Laricopsis Kent. Trees deciduous; trunk monopodial, straight, terete; branches irregularly whorled; branchlets strongly dimorphic: long branchlets with leaves spirally arranged and radially spreading; short branchlets with leaves radially arranged in false whorls of 10–30 (often spirally spread like a discoid star). Leaves green, turning golden yellow before falling in autumn, narrowly oblanceolate-linear, flattened, 1.5–4 mm wide, flexible, stomatal lines abaxial, in 2 bands, separated by midvein, vascular bundle 1, resin canals 2 or 3 (–7), marginal. Pollen cones terminal on short branchlets, borne in umbellate clusters of 10–25, pendulous at maturity; pollen 2-saccate. Seed cones solitary, shortly pedunculate, erect or ± spreading, ovoid-globose, 2-seeded, maturing in 1st year. Seed scales thick, woody, deciduous at maturity. Bracts adnate to seed scales at base and shed together with them at maturity. Seeds with large, backward projecting wing extending beyond scale margin at maturity. Cotyledons 4–7. 2n = 44*. • One species: China. 1. Pseudolarix amabilis (J. Nelson) Rehder, J. Arnold Arbor. 1: 53. 1919. 金钱松 jin qian song Larix amabilis J. Nelson, Pinaceae 84. 1866; Abies kaempferi Lindley; Chrysolarix amabilis (J. Nelson) H. E. Moore; Laricopsis kaempferi (Lindley) Kent; Pseudolarix fortunei Mayr; P. kaempferi Gordon; P. pourtetii Ferré. Trees to 40 m tall; trunk to 3 m d.b.h.; bark gray-brown, rough, scaly, flaking; crown broadly conical; long branchlets initially reddish brown or reddish yellow, glossy, glabrous, becoming yellowish gray, brownish gray, or rarely purplish brown in 2nd or 3rd year, finally gray or dark gray; short branchlets slow growing, bearing dense rings of leaf cushions; winter buds ovoid, scales free at apex. -
Botsad 03 2018.Indd
БЮЛЛЕТЕНЬ ГЛАВНОГО БОТАНИЧЕСКОГО САДА 3/2018 (Выпуск 204) ISSN: 0366-502Х СОДЕРЖАНИЕ Учредители: Федеральное государственное ИНТРОДУКЦИЯ И АККЛИМАТИЗАЦИЯ бюджетное учреждение науки Главный ботанический сад им. Н.В. Цицина РАН ООО «Научтехлитиздат»; ООО «Мир журналов». Издатель: Фирсов Г.А. ООО «Научтехлитиздат» Журнал зарегистрирован федеральной службой по надзору в сфере связи Представители рода тисс (Taxus L.) в Ботаническом саду Петра Великого .........3 информационных технологий и массовых коммуникаций (Роскомнадзор). Шейко В.В. Свидетельство о регистрации СМИ ПИ № ФС77-46435 Lonicera chamissoi Bunge ex P.Kir. в природе и культуре ......................................12 Подписные индексы ОАО «Роспечать» 83164 «Пресса России» 11184 Волчанская А.В., Фирсов Г.А. Главный редактор: Демидов А.С., доктор биологических Долговечность и устойчивость редких древесных растений флоры наук, профессор, Россия Редакционная коллегия: России в Ботаническом саду Петра Великого .......................................................19 Бондорина И.А. доктор биол. наук, Россия Виноградова Ю.К. доктор биол. наук Россия Горбунов Ю.Н. доктор биол. наук, Сахарова С.Г., Орлова Л.В., Тарасевич В.Ф. (зам. гл. редактора), Россия Иманбаева А.А. канд. биол. наук, Казахстан Молканова О.И. канд. с/х наук, Россия К уточнению таксономии видов коллекции ботанического сада Плотникова Л.С. доктор биол. наук, проф. Россия Решетников В.Н. доктор биол. наук, СПбГЛТА (на примере Pseudolarix amabilis (J. Nelson) Rehder )..........................27 проф., Беларусь Романов М.С. канд.биол.наук, Россия Семихов В.Ф. доктор биол.наук, проф. Россия Кабанов А.В. Ткаченко О.Б. доктор биол. наук, Россия Шатко В.Г. канд. биол. наук (отв. секретарь), Россия Особенности формирования коллекции астильбы в ГБС РАН ............................40 Швецов А.Н. канд. биол. наук, Россия Huang Hongwen Prof., China Peter Wyse Jackson Dr., Prof.,USA Бугаев В.В. -
Biodiversity Conservation in Botanical Gardens
AgroSMART 2019 International scientific and practical conference ``AgroSMART - Smart solutions for agriculture'' Volume 2019 Conference Paper Biodiversity Conservation in Botanical Gardens: The Collection of Pinaceae Representatives in the Greenhouses of Peter the Great Botanical Garden (BIN RAN) E M Arnautova and M A Yaroslavceva Department of Botanical garden, BIN RAN, Saint-Petersburg, Russia Abstract The work researches the role of botanical gardens in biodiversity conservation. It cites the total number of rare and endangered plants in the greenhouse collection of Peter the Great Botanical garden (BIN RAN). The greenhouse collection of Pinaceae representatives has been analysed, provided with a short description of family, genus and certain species, presented in the collection. The article highlights the importance of Pinaceae for various industries, decorative value of plants of this group, the worth of the pinaceous as having environment-improving properties. In Corresponding Author: the greenhouses there are 37 species of Pinaceae, of 7 geni, all species have a E M Arnautova conservation status: CR -- 2 species, EN -- 3 species, VU- 3 species, NT -- 4 species, LC [email protected] -- 25 species. For most species it is indicated what causes depletion. Most often it is Received: 25 October 2019 the destruction of natural habitats, uncontrolled clearance, insect invasion and diseases. Accepted: 15 November 2019 Published: 25 November 2019 Keywords: biodiversity, botanical gardens, collections of tropical and subtropical plants, Pinaceae plants, conservation status Publishing services provided by Knowledge E E M Arnautova and M A Yaroslavceva. This article is distributed under the terms of the Creative Commons 1. Introduction Attribution License, which permits unrestricted use and Nowadays research of biodiversity is believed to be one of the overarching goals for redistribution provided that the original author and source are the modern world. -
Open As a Single Document
ILLUSTRATIONS Professor Charles Sprague Sargent in the Arnold Arboretum Library -1904, Plate I, opposite p. 30 Flowers and fruits of the hardy orange, Porrcirus tr;f’oliata. Plate II, p. 35 Map showing absolute minimum temperatures in the Northeastern states from 1926-1940. Plate III, p. 47 Map showing an average length for growing season in the Northeast- ern states. Plate IV, p. 49 Map showing the average July temperature in the Northeastern states for the years 1926 to 1940. Plate V, p. 511 Black walnuts. Plate VI, p. 33 Hickory nuts of various types. Plate VII, p. 57 The native rock elm, Ulmu.r thomasi. Plate VIII, p. 69 The European white elm or Russian elm, Lllmus laenis. Plate IX, p.711 Two varieties of the smoothleaf elm, L’lmus carpinjfolia. Plate X, p. 755 Leaf specimens of various elm species. Plate XI, p. 79 111 . ARNOLDIA A continuation of the BULLETIN OF POPULAR INFORMATION of the Arnold Arboretum, Harvard University VOLUME 1 MARCH 14, 1941 NUMBER I A SIMPLE CHANGE IN NAME "Bulletin of Popular Information" has always been an un- OURsatisfactory periodical to cite, because of the form of its title, which reads: "Arnold Arboretum, Harvard University, Bulletin of Popular Information." Moreover, for no very obvious reason, in the twenty-nine years of its publication it has attamed four series, and for clarity it is necessary to cite the series as well as the volume. In- itiated in May, 1911, sixty-three unpaged numbers form the first series, this run closing in November, 1914. In 1915, a new series was commenced with volume one and was continued for twelve years, closing with volume twelve in December, 1926. -
Bgci's Plant Conservation Programme in China
SAFEGUARDING A NATION’S BOTANICAL HERITAGE – BGCI’S PLANT CONSERVATION PROGRAMME IN CHINA Images: Front cover: Rhododendron yunnanense , Jian Chuan, Yunnan province (Image: Joachim Gratzfeld) Inside front cover: Shibao, Jian Chuan, Yunnan province (Image: Joachim Gratzfeld) Title page: Davidia involucrata , Daxiangling Nature Reserve, Yingjing, Sichuan province (Image: Xiangying Wen) Inside back cover: Bretschneidera sinensis , Shimen National Forest Park, Guangdong province (Image: Xie Zuozhang) SAFEGUARDING A NATION’S BOTANICAL HERITAGE – BGCI’S PLANT CONSERVATION PROGRAMME IN CHINA Joachim Gratzfeld and Xiangying Wen June 2010 Botanic Gardens Conservation International One in every five people on the planet is a resident of China But China is not only the world’s most populous country – it is also a nation of superlatives when it comes to floral diversity: with more than 33,000 native, higher plant species, China is thought to be home to about 10% of our planet’s known vascular flora. This botanical treasure trove is under growing pressure from a complex chain of cause and effect of unprecedented magnitude: demographic, socio-economic and climatic changes, habitat conversion and loss, unsustainable use of native species and introduction of exotic ones, together with environmental contamination are rapidly transforming China’s ecosystems. There is a steady rise in the number of plant species that are on the verge of extinction. Great Wall, Badaling, Beijing (Image: Zhang Qingyuan) Botanic Gardens Conservation International (BGCI) therefore seeks to assist China in its endeavours to maintain and conserve the country’s extraordinary botanical heritage and the benefits that this biological diversity provides for human well-being. It is a challenging venture and represents one of BGCI’s core practical conservation programmes. -
Phylogeny and Biogeography of Tsuga (Pinaceae)
Systematic Botany (2008), 33(3): pp. 478–489 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data Nathan P. Havill1,6, Christopher S. Campbell2, Thomas F. Vining2,5, Ben LePage3, Randall J. Bayer4, and Michael J. Donoghue1 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 U.S.A 2School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735 U.S.A. 3The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 U.S.A. 4CSIRO – Division of Plant Industry, Center for Plant Biodiversity Research, GPO 1600, Canberra, ACT 2601 Australia; present address: Department of Biology, University of Memphis, Memphis, Tennesee 38152 U.S.A. 5Present address: Delta Institute of Natural History, 219 Dead River Road, Bowdoin, Maine 04287 U.S.A. 6Author for correspondence ([email protected]) Communicating Editor: Matt Lavin Abstract—Hemlock, Tsuga (Pinaceae), has a disjunct distribution in North America and Asia. To examine the biogeographic history of Tsuga, phylogenetic relationships among multiple accessions of all nine species were inferred using chloroplast DNA sequences and multiple cloned sequences of the nuclear ribosomal ITS region. Analysis of chloroplast and ITS sequences resolve a clade that includes the two western North American species, T. heterophylla and T. mertensiana, and a clade of Asian species within which one of the eastern North American species, T. caroliniana, is nested. The other eastern North American species, T. canadensis, is sister to the Asian clade. Tsuga chinensis from Taiwan did not group with T. -
IUCN Red List of Threatened Species™ to Identify the Level of Threat to Plants
Ex-Situ Conservation at Scott Arboretum Public gardens and arboreta are more than just pretty places. They serve as an insurance policy for the future through their well managed ex situ collections. Ex situ conservation focuses on safeguarding species by keeping them in places such as seed banks or living collections. In situ means "on site", so in situ conservation is the conservation of species diversity within normal and natural habitats and ecosystems. The Scott Arboretum is a member of Botanical Gardens Conservation International (BGCI), which works with botanic gardens around the world and other conservation partners to secure plant diversity for the benefit of people and the planet. The aim of BGCI is to ensure that threatened species are secure in botanic garden collections as an insurance policy against loss in the wild. Their work encompasses supporting botanic garden development where this is needed and addressing capacity building needs. They support ex situ conservation for priority species, with a focus on linking ex situ conservation with species conservation in natural habitats and they work with botanic gardens on the development and implementation of habitat restoration and education projects. BGCI uses the IUCN Red List of Threatened Species™ to identify the level of threat to plants. In-depth analyses of the data contained in the IUCN, the International Union for Conservation of Nature, Red List are published periodically (usually at least once every four years). The results from the analysis of the data contained in the 2008 update of the IUCN Red List are published in The 2008 Review of the IUCN Red List of Threatened Species; see www.iucn.org/redlist for further details. -
Cedrus, Keteleeria, Pseudolarix, and Pseudo- Key Words: Abies, Larix
IAWA Journal, Vol. 15 (4), 1994: 399-406 FUSIFORM PARENCHYMA CELLS IN THE YOUNG WOOD OF PINACEAE, AND THEIR DISTINCTION FROM MARGINAL PARENCHYMA by Shuichi Noshiro and Tomoyuki Fujii Wood Anatomy Laboratory, Forestry and Forest Products Research Institute, Tsukuba Norin, P. O. Box 16, Ibaraki 305, Japan Summary Fusiform parenchyma cells found in sev ray tracheids, and the proportion of ray tra eral genera of Pinaceae are described and cheid pit border types. Recently, Anagnost compared with marginal parenchyma. Fusi et al. (1994) restudied all these features using form parenchyma cells are mostly fusiform world-wide sam pIes of Picea and Larix, and in shape, with occasional smooth horizontal confirmed the results of Bartholin (1979) that walls. They form discontinuous tangential ray tracheid pit border types were the most bands in complete or incomplete circ1es in the reliable characteristic. However, because of innermost growth rings of Larix, Abies, and restricted growth in branches, it was difficult Tsuga. Fusiform parenchyma always con to use these stemwood characteristics in iden tains resinous material, and is more conspic tifying branchwoods. uous in branchwoods than in stern woods. Modern branchwood materials gathered Marginal parenchyma cells were observed in for comparative purposes, however, revealed Cedrus, Keteleeria, Pseudolarix, and Pseudo the conspicuous occurrence of resinous paren tsuga as weIl as in Larix, Abies, and Tsuga, chyma cells in the inner growth rings of Larix and very rarely in Picea. Marginal paren and their absence in Picea. Occurrence of chyma cells are scattered along growth ring resinous parenchyma ceHs was also observed boundaries. They are always in strands with in the Quaternary branchwoods, and was used nodular horizontal walls with conspicuous to distinguish Larix branchwoods from Picea simple pits. -
Fluorescent Band Pattern of Chromosomes in Pseudolarix Amabilis, Pinaceae
© 2015 The Japan Mendel Society Cytologia 80(2): 151–157 Fluorescent Band Pattern of Chromosomes in Pseudolarix amabilis, Pinaceae Masahiro Hizume* Faculty of Education, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan Received October 27, 2014; accepted November 18, 2014 Summary Pseudolarix amabilis belongs to one of three monotypic genera in Pinaceae. This species had 2n=44 chromosomes in somatic cells and its karyotype was composed of four long submetacentric chromosomes and 40 short telocentric chromosomes that varied gradually in length, supporting previous reports by conventional staining. The chromosomes were stained sequentially with the fluorochromes, chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI). CMA- bands appeared on 12 chromosomes at near terminal region and proximal region. DAPI-bands appeared at centromeric terminal regions of all 40 telocentric chromosomes. The fluorescent-banded karyotype of this species was compared with those of other Pinaceae genera considering taxonomical treatment and molecular phylogenetic analyses reported. On the basis of the fluorescent-banded karyotype, the relationship between Pseudolarix amabilis and other Pinaceae genera was discussed. Key words Chromomycin, Chromosome, DAPI, Fluorescent banding, Pinaceae, Pseudolarix amabilis. In Pinaceae, 11 genera with about 220 species are distinguished and grow mostly in the Northern Hemisphere (Farjon 1990). Most genera are evergreen trees, and only Larix and Pseudolarix are deciduous. Pinus is the largest genus in species number, and Cathaya, Nothotsuga and Pseudolarix are monotypic genera. The taxonomy of Pinaceae with 11 genera is complicated, having some problems in species or variety level. Several higher taxonomic treatments were reported on the base of anatomy and morphology such as resin canal in the vascular cylinder, seed scale, position of mature cones, male strobili in clusters from a single bud, and molecular characters in base sequences of several DNA regions. -
Master Plant List 2017.Xlsx
Master Plant List 2017 Availability, Pot Size and Prices are subject to change. Category Type Botanical Name Common Name Size Price Range N BREVER Azalea X 'Cascade' Cascade Azalea (Glenn Dale Hybrid) #3 49.99 N BREVER Azalea X 'Electric Lights' Electric Lights Double Pink Azalea #2 44.99 N BREVER Azalea X 'Karen' Karen Azalea #2, #3 39.99 - 49.99 N BREVER Azalea X 'Poukhanense Improved' Poukhanense Improved Azalea #3 49.99 N BREVER Azalea X 'Renee Michelle' Renee Michelle Pink Azalea #3 49.99 N BREVER Azalea X 'Stewartstonian' Stewartstonian Azalea #3 49.99 N BREVER Buxus Microphylla Japonica "Gregem' Baby Gem Boxwood #2 29.99 N BREVER Buxus Sempervirens 'Green Tower' Green Tower Boxwood #5 64.99 N BREVER Buxus Sempervirens 'Katerberg' North Star Dwarf Boxwood #2 44.99 N BREVER Buxus Sinica Var. Insularis 'Wee Willie' Wee Willie Dwarf Boxwood Little One, #1 13.99 - 21.99 N BREVER Buxus X 'Cranberry Creek' Cranberry Creek Boxwood #3 89.99 #1, #2, #5, #15 Topiary, #5 Cone, #5 Spiral, #10 Spiral, N BREVER Buxus X 'Green Mountain' Green Mountain Boxwood #5 Pyramid 14.99-299.99 N BREVER Buxus X 'Green Velvet' Green Velvet Boxwood #1, #2, #3, #5 17.99 - 59.99 N BREVER Buxus X 'Winter Gem' Winter Gem Boxwood #5, #7 59.99 - 99.99 N BREVER Daphne X Burkwoodii 'Carol Mackie' Carol Mackie Daphne #2 59.99 N BREVER Euonymus Fortunei 'Ivory Jade' Ivory Jade Euonymus #2 35.99 N BREVER Euonymus Fortunei 'Moonshadow' Moonshadow Euonymus #2 29.99 - 35.99 N BREVER Euonymus Fortunei 'Rosemrtwo' Gold Splash Euonymus #2 39.99 N BREVER Ilex Crenata 'Sky Pencil'