New Early Cambrian Eocrinoids from the Iberian Chains (NE Spain) and Their Role in Nonreefal Benthic Communities

Total Page:16

File Type:pdf, Size:1020Kb

New Early Cambrian Eocrinoids from the Iberian Chains (NE Spain) and Their Role in Nonreefal Benthic Communities 0012-9402/04/030371-9 Eclogae geol. Helv. 97 (2004) 371–379 DOI 10.1007/s00015-004-1140-7 Birkhäuser Verlag, Basel, 2004 New Early Cambrian eocrinoids from the Iberian Chains (NE Spain) and their role in nonreefal benthic communities SÉBASTIEN CLAUSEN1 Key words: Echinoderms, palaeoecology, Lower Cambrian, western Gondwana margin. Mots clés: Echinodermes, paléoécologie, Cambrien inférieur, Marge occidentale du Gondwana. ABSTRACT RESUME The Early Cambrian echinoderm-sponge meadows, which colonized shallow Malgré leur large distribution dans plusieurs régions du Gondwana, les carbonate-siliciclastic platforms, have received relatively little study despite colonies à échinodermes et éponges du Cambrien inférieur qui colonisèrent les their widespread occurrence in several regions of Gondwana. Their taxa are plates-formes peu profondes en régime sédimentaire mixte demeurent rela- generally preserved disarticulated, reworked and deposited through the action tivement peu étudiées. Leur taxa sont généralement préservés désarticulés et of waves and storms. Silicified echinoderm-rich packstones from the upper- remaniés au sein de dépôts hydrodynamiques sous l’influence des vagues et most Bilbilian limestones (latest Early Cambrian in age) of the Valdemiedes tempêtes. Des packstones silicifiés à échinodermes du Bilbilien terminal (fin Formation (Iberian Chains, NE Spain) formed through growth and destruc- du Cambrien inférieur) de la Formation de Valdemiedes (Chaînes Ibériques, tion of echinoderm-sponge colonies by storm-wave action. This fauna has been Nord-Est de l’Espagne) ont été étudiés en lames minces et par dissolution à studied in thin section and after etching by acetic acid. Eocrinoid remains in- l’acide acétique. Ces bancs calcaires furent formés par la destruction répétée clude the thecal basal-ossicle of Rhopalocystis? mesonesensis n. sp. and other de colonies à éponges et échinodermes par l’action commune des vagues et indeterminate species. Echinoderm columnals, visible in thin section, are asso- tempêtes. Les restes d’éocrinoïdes extraits incluent la pièce basale de la thèque ciated with sponge spicules, trilobites, calcite- and phosphate-shelled bra- de Rhopalocystis? mesonesensis n. sp., ainsi que d’autres espèces indéter- chiopods, chancelloriid sclerites, and foraminiferans. This finding suggests that minées. Des columnales d’échinodermes sont également visibles en lames stemmed eocrinoids were already present on the western Gondwana margin at minces. Ces fossiles sont associés à des spicules d’éponges, des trilobites, des the end of the Early Cambrian. brachiopodes à valves calcaires et phosphatées, des sclérites de chancellori- ides et des foraminifères. Cette étude suggère que les échinodermes à tige étaient présents sur la marge occidentale du Gondwana dès la fin du Cam- brien inférieur. reef-building frameworks that evolved in the western Gond- 1. Introduction wana margin under a wide geodynamic extensional regime. The Lower Cambrian sedimentary record is considered to rep- Palaeogeographical reconstructions for the Early Cambrian, resent the widest distribution of carbonate platforms during based on lithological indicators of climate (Álvaro et al. 2000), the Early Palaeozoic of the western Gondwana margin. Micro- place the southward-drifting, western Gondwana margin in an bial and microbial-archaeocyathan buildups are representative arid subequatorial belt some 15–30°S, consistent with the pres- benthic communities of the Lower Cambrian rocks in western ence of extensive reefs and evaporites. Europe and northern Africa. These reef complexes are rela- By contrast, the sedimentary and palaeoecological patterns tively well known for their synsedimentary tectonic processes, of the Early Cambrian nonreefal echinoderm-sponge meadows preservation of primary textures, luxuriant growth of calcimi- reported in the same marine platforms have been relatively ig- crobes, and biodiversity based on phosphatic- and siliceous- nored because of their limited outcrop exposure, mixed (car- walled microfossils available after etching. Lower Cambrian bonate-siliciclastic) character of their substrates, and drastic di- reefal limestones developed from Morocco to the Iberian agenesis. As envisaged by Álvaro & Vennin (1997) in the Iber- Peninsula, the Montagne Noire, the Armorican Massif ian Chains (NE Spain), the ecological patterns of the non- (France), and Sardinia, recording a history of discontinuous reefal benthic communites were controlled by factors quite 1 Université des Sciences et Technologies de Lille, U.F.R. Sciences de la Terre, Laboratoire de Paléontologie et Paléogéographie du Paléozoïque (LP3), UMR 8014 du C.N.R.S., F-59655 Villeneuve d’Ascq Cedex, France. E-mail: Sé[email protected] Early Cambrian echinoderms 371 N Tierga 600 600 Jarque 250 km 700 Mesones Paracuellos Calatayud Mesones Ateca Alhama 700 Fig. 1. Geological setting of Daroca the Iberian Chains in the N 1 km context of the pre-Hercynian outcrops of the Iberian Peninsula (A) and geological Calamocha sketch of the Cambrian out- Middle Murero Formation 20 km Cambrian Mansilla Formation crops of the Mesones de Valdemiedes Formation Ordovician to Carboniferous Isuela-Tierga area (eastern Lower Daroca Formation Cambrian Cambrian Hu rmeda Formation Iberian chain, boxed area Precambrian Ribota Formation A B Jalon Formation in (A)) studied here (from Álvaro 1994). different from those that governed the establishment and 1996a–b, 1997). The Lower-Middle Cambrian boundary is in growth of reefs. Their taxa are rarely preserved in growth posi- the Valdemiedes Formation, the biostratigraphical chart of tion but, instead, are disarticulated, reworked and deposited which has been established on the basis of trilobite zonation as hydrodynamic pavement (transported sediment accumula- (Álvaro et al. 1993; Liñán et al. 1993). All the echinoderms tion) influenced by the action of waves and storms. Sponges analysed here were found from the limestone intercalations of bearing siliceous spicules can be studied after their extraction the Hamatolenus (H.) ibericus zone, uppermost Bilbilian from limestone intercalations by dissolving the rock in dilute (Early Cambrian; Fig. 2). acids. However, thin sections are frequently the only way to The studied limestones consist of light to medium grey, study carbonate echinoderm plates. echinoderm packstones, thinly bedded (less than 1.4 m thick), The purpose of this paper is to present a study of Early and partly bioturbated. Additional faunal elements include Cambrian echinoderms based on thin sections and descriptions trilobites, calcite- and phosphate-shelled brachiopods, chancel- of new stemmed-eocrinoid skeletal elements after etching loriid sclerites, siliceous sponge spicules, and psammo- from silicified limestones. This case study is available because sphaerids (foraminiferans). The content of silt-size fraction is of the special diagenetic conditions recorded in some lime- highly variable. Intervals without active reworking are indi- stones of the Valdemiedes Formation (Iberian Chains, NE cated by the episodic occurrence of burrows, rarity of low- Spain), whose silicification processes preserved the microstruc- angle cross-bedding structures, and presence of an encrusting ture of some echinoderm skeletons. This will allow a better un- epibenthic fauna that suggests taphonomic feedback processes derstanding of the role of echinoderms in the echinoderm- (sensu Kidwell 1991). sponge meadows that covered the Lower Cambrian mixed substrates of the western Gondwana margin. 3. Systematic palaeontology The described specimens are housed in the Museo Paleon- 2. Geological setting and stratigraphy tológico of the Zaragoza University (prefixed MPZ). The echinoderm ossicles reported here were found in the lower part of the Cambrian Valdemiedes Formation (Iberian Phylum echinodermata KLEIN 1734 Chains, NE Spain; Fig. 1). The formation (20–150 m thick) Subphylum Blastozoa SPRINKLE 1973 consists of alternating beds of green marly shales and carbon- Class Eocrinoidea JAEKEL 1918 ates (Fig. 2). The carbonate intercalations are white limestones and yellow dolostones, up to 20 cm in thickness. The lower Family Rhopalocystidae UBAGHS 1968 part of the formation contains stromatolitic limestones, where- as bioclastic limestones dominate its upper part. A lithofacies Discussion. – The Family Rhopalocystidae was erected based analysis of the Valdemiedes Formation and its palaeogeo- on the genus Rhopalocystis (type species: Rhopalocystis graphical distribution throughout the Iberian platform were destombesi UBAGHS 1963). Valid species are R. destombesi recently established (Álvaro et al. 1993; Álvaro & Vennin UBAGHS 1963, R. grandis CHAUVEL 1971, R. zagoraensis 372 S. Clausen and age difference (early Cambrian vs Tremadocian). Never- AGE LITHOL. FORMATIONS theless, the characters described in the new species share those of the basal ossicle with Rhopalocystis but none of the few Caesa- Murero eocrinoid genera known from the Cambrian. Furthermore, raugustian (50-250 m) since the material collected is incomplete, it is referred to under open generic nomenclature. As a result, it is necessary Mansilla to question the generic assignation of the new species de- middle (10-70 m) Leonian scribed herein until more material permits to improve this uncertain assignation. Valde- The nomenclature and orientation followed below is that miedes used in the latest Treatise on Invertebrate Paleontology (20-150 m) (Ubaghs 1968, p. S458) and in the original
Recommended publications
  • 34- Subcuenca Del Río Manubles
    -34- SUBCUENCA DEL RÍO MANUBLES RÍO MANUBLES Aplicación del Índice Hidrogeomorfológico IHG a la cuenca del Ebro ÍNDICE 34. Subcuenca del río Manubles ............................................................................................ 34-3 34.1. Introducción ........................................................................................................... 34-3 34.2. Río Manubles .......................................................................................................... 34-5 34.2.1. Masa de agua 321: Río Manubles ........................................................................ 34-6 34.2.1.1. Calidad funcional del sistema ........................................................................ 34-6 34.2.1.2. Calidad del cauce ........................................................................................ 34-7 34.2.1.3. Calidad de las riberas................................................................................... 34-8 34.3. Resultados ............................................................................................................ 34-10 34.3.1. Río Manubles .................................................................................................. 34-10 LISTA DE FIGURAS Figura 34-1. Río Manubles en Villalengua. .............................................................................. 34-3 Figura 34-2. Mapa de la subcuenca del río Manubles. .............................................................. 34-4 Figura 34-3. Esquema de masas valoradas del río Manubles.
    [Show full text]
  • The A/P Axis in Echinoderm Ontogeny and Evolution: Evidence from Fossils and Molecules
    EVOLUTION & DEVELOPMENT 2:2, 93–101 (2000) The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules Kevin J. Peterson,a,b César Arenas-Mena,a,c and Eric H. Davidsona,* aDivision of Biology, California Institute of Technology, Pasadena, CA 91125, USA; bDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; cStowers Institute for Medical Research, Kansas City, MO 64110, USA *Author for correspondence (email: [email protected]) SUMMARY Even though echinoderms are members of the such that there is but a single plane of symmetry dividing the Bilateria, the location of their anterior/posterior axis has re- animal into left and right halves. We tentatively hypothesize mained enigmatic. Here we propose a novel solution to the that this plane of symmetry is positioned along the dorsal/ven- problem employing three lines of evidence: the expression of tral axis. These axis identifications lead to the conclusion that a posterior class Hox gene in the coeloms of the nascent the five ambulacra are not primary body axes, but instead are adult body plan within the larva; the anatomy of certain early outgrowths from the central anterior/posterior axis. These fossil echinoderms; and finally the relation between endo- identifications also shed insight into several other evolutionary skeletal plate morphology and the associated coelomic tis- mysteries of various echinoderm clades such as the indepen- sues. All three lines of evidence converge on the same answer, dent evolution of bilateral symmetry in irregular echinoids, but namely that the location of the adult mouth is anterior, and the do not elucidate the underlying mechanisms of the adult co- anterior/posterior axis runs from the mouth through the adult elomic architecture.
    [Show full text]
  • MAPA SANITARIO DE LA COMUNIDAD AUTÓNOMA DE ARAGÓN Mapa Sanitario De Aragón  Sector De Calatayud 12
    MAPA SANITARIO DE LA COMUNIDAD AUTÓNOMA DE ARAGÓN SECTOR DE CALATAYUD DIRECCIÓN DEL DOCUMENTO MANUEL GARCÍA ENCABO Director General de Planificación y Aseguramiento Departamento de Salud y Consumo JULIÁN DE LA BÁRCENA GUALLAR Jefe de Servicio de Ordenación y Planificación Sanitaria Dirección General de Planificación y Aseguramiento Departamento de Salud y Consumo ELABORACIÓN MARÍA JOSÉ AMORÍN CALZADA Servicio de Planificación y Ordenación Sanitaria Dirección General de Planificación y Aseguramiento Departamento de Salud y Consumo OLGA MARTÍNEZ ARANTEGUI Servicio de Planificación y Ordenación Sanitaria Dirección General de Planificación y Aseguramiento Departamento de Salud y Consumo DIEGO JÚDEZ LEGARISTI Médico Interno Residente de Medicina Preventiva y Salud Pública Hospital Clínico Universitario Lozano Blesa AGRADECIMIENTOS Se agradece la colaboración prestada en la revisión de este documento a Javier Quíntin Gracia de la Dirección de Atención Primaria del Servicio Aragonés de Salud, y a María Luisa Gavín Lanzuela del Instituto Aragonés de Estadística. Además, este documento pretende ser continuación de la labor iniciada hace años por compañeros de la actual Dirección de Atención Primaria del Servicio Aragonés de Salud. Zaragoza, septiembre de 2004 Mapa Sanitario de Aragón Sector de Calatayud 3 ÍNDICE INFORMACIÓN GENERAL............................................................................. 5 ZONA DE SALUD DE ALHAMA DE ARAGÓN................................................. 13 ZONA DE SALUD DE ARIZA .......................................................................
    [Show full text]
  • Classification
    Science Classification Pupil Workbook Year 5 Unit 5 Name: 2 3 Existing Knowledge: Why do we put living things into different groups and what are the groups that we can separate them into? You can think about the animals in the picture and all the others that you know. 4 Session 1: How do we classify animals with a backbone? Key Knowledge Key Vocabulary Animals known as vertebrates have a spinal column. Vertebrates Some vertebrates are warm-blooded meaning that they Species maintain a consistent body temperature. Some are cold- Habitat blooded, meaning they need to move around to warm up or cool down. Spinal column Vertebrates are split into five main groups known as Warm-blooded/Cold- mammals, amphibians, reptiles, birds and fish. blooded Task: Look at the picture here and think about the different groups that each animal is part of. How is each different to the others and which other animals share similar characteristics? Write your ideas here: __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ 5 How do we classify animals with a backbone? Vertebrates are the most advanced organisms on Earth. The traits that make all of the animals in this group special are
    [Show full text]
  • Amphipholis Squamata MICHAEL P
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1990, p. 2436-2440 Vol. 56, No. 8 0099-2240/90/082436-05$02.00/0 Copyright C) 1990, American Society for Microbiology Description of a Novel Symbiotic Bacterium from the Brittle Star, Amphipholis squamata MICHAEL P. LESSERt* AND RICHARD P. BLAKEMORE Department of Microbiology, University of New Hampshire, Durham, New Hampshire 03824 Received 8 November 1989/Accepted 3 June 1990 A gram-negative, marine, facultatively anaerobic bacterial isolate designated strain AS-1 was isolated from the subcuticular space of the brittle star, Amphipholis squamata. Its sensitivity to 0/129 and novobiocin, overall morphology, and biochemical characteristics and the moles percent guanine-plus-cytosine composition of its DNA (42.9 to 44.4) suggest that this isolate should be placed in the genus Vibrio. Strain AS-1 was not isolated from ambient seawater and is distinct from described Vibrio species. This symbiotic bacterium may assist its host as one of several mechanisms of nutrient acquisition during the brooding of developing embryos. The biology of bacterium-invertebrate symbiotic associa- isopropyl alcohol for 30 s and two rinses in sterile ASW. tions has elicited considerable interest, particularly since the Logarithmic dilutions were plated on Zobell modified 2216E discoveries during the past decade of chemoautotrophic medium (ASW, 1 g of peptone liter-1, 1 g of yeast extract symbiotic bacteria associated with several invertebrate spe- liter-' [pH 7.8 to 8.4]) (29), as were samples of ambient cies in sulfide-rich habitats (4, 5). Bacterial-invertebrate seawater from the site of collection and ASW controls. All symbioses (mutualistic) have been reported from many materials and equipment were sterilized, and all procedures invertebrate taxa, examples of which include cellulolytic were performed by aseptic techniques.
    [Show full text]
  • Biology of Echinoderms
    Echinoderms Branches on the Tree of Life Programs ECHINODERMS Written and photographed by David Denning and Bruce Russell Produced by BioMEDIA ASSOCIATES ©2005 - Running time 16 minutes. Order Toll Free (877) 661-5355 Order by FAX (843) 470-0237 The Phylum Echinodermata consists of about 6,000 living species, all of which are marine. This video program compares the five major classes of living echinoderms in terms of basic functional biology, evolution and ecology using living examples, animations and a few fossil species. Detailed micro- and macro- photography reveal special adaptations of echinoderms and their larval biology. (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE VIDEO PROGRAM) Summary of the Program: Introduction - Characteristics of the Class Echinoidea phylum. spine adaptations, pedicellaria, Aristotle‘s lantern, sand dollars, urchin development, Class Asteroidea gastrulation, settlement skeleton, water vascular system, tube feet function, feeding, digestion, Class Holuthuroidea spawning, larval development, diversity symmetry, water vascular system, ossicles, defensive mechanisms, diversity, ecology Class Ophiuroidea regeneration, feeding, diversity Class Crinoidea – Topics ecology, diversity, fossil echinoderms © BioMEDIA ASSOCIATES (1 of 7) Echinoderms ... ... The characteristics that distinguish Phylum Echinodermata are: radial symmetry, internal skeleton, and water-vascular system. Echinoderms appear to be quite different than other ‘advanced’ animal phyla, having radial (spokes of a wheel) symmetry as adults, rather than bilateral (worm-like) symmetry as in other triploblastic (three cell-layer) animals. Viewers of this program will observe that echinoderm radial symmetry is secondary; echinoderms begin as bilateral free-swimming larvae and become radial at the time of metamorphosis. Also, in one echinoderm group, the sea cucumbers, partial bilateral symmetry is retained in the adult stages -- sea cucumbers are somewhat worm–like.
    [Show full text]
  • Bird Watching
    BIRD WATCHING CONTENTS Pablo Vicente y Luis Tirado PHOTOS Alberto Carreño, Alberto Portero, Antonio Torrijo, Eduardo Viñuales, Ismael González, Javier Ara, Juan Carlos Muñoz, Juan Jiménez, Oscar J. González, Pablo Vicente, Ramiro Muñoz, Toño Martínez, Asoc. Amigos de Gallocanta DESIGN Samuel Aznar + Asociados / Miguel Frago Province of Zaragoza Magallón Salt Lake. Photo by Toño Martínez Gallocanta Lagoon. Photo by Juan Jiménez Great Bustards in the Manubles heights. Photo by Alberto Portero Juslibol Bayou. Photo by Juan Jiménez BIRD WATCHING PROVINCE OF ZARAGOZA Groves, riversides, deserts, Mediterranean woods, rocky areas, salt lakes, steppes, wetlands... The large variety of ecosystems to be found in the province of Zaragoza allow us to easily see birds as different as great bustards, cranes, Egyptian vultures, ferruginous ducks, great bitterns, Dupont's lark, little bustards and red kites among many others. The province of Zaragoza is of great ornithological interest because of both the quantity and the variety of species present for both specialists and for nature lovers who are just beginning to bird-watch. We have suggested some easy routes where the most emblematic birds in each zone - that might pique your interest or those that are endangered - may be found. Zaragoza invites you to meet her ornithological treasures. Map of the area Yesa Dam River Recal 1 River Onsella NAVARRA Santo Domingo Mountains Agonía River Riguel River Arba de Luesia River Arba de Biel Channel of La Pardina San Bartolomé Dam River Farasdués Moncayuelo Lagoon Bolaso Dam Channel of Bardenas HUESCA LA RIOJA Lakes and reed beds Ejea de los of Cinco Villas Caballeros River Loma La Negra - Bardenas Arba de Biel Channel of Bardenas E.
    [Show full text]
  • An Invertebrate Is an Animal Without a Backbone. They Have No Internal Skeleton and Normally Have Soft, Flexible Bodies
    An invertebrate is an animal without a backbone. They have no internal skeleton and normally have soft, flexible bodies. Some have a hard outer skeleton (an exoskeleton) which protects them. Here are seven of the main categories: Insects Crustaceans Echinoderms (bees, ladybirds, ants) (crabs, shrimps, lobster) (starfish, sea urchin) Insects have a hard outer casing which Crustaceans have a hard outer shell which Echinoderms only live in water and protects the soft body inside. The body of protects the soft inner body. The body is made have a hard spiny covering or skin. an insect is split into three sections: up of two parts which sometimes look like Their bodies also have radial head, thorax and abdomen. they are fused together. symmetry with five or more arms or legs. Insects have antennae and usually have 3 Crustaceans have more than 3 pairs of legs pairs of legs. They also sometimes and many will have claws at the end of the An echinoderm can grow back part have wings. first set of legs. of its body if it becomes damaged. Annelids Arachnids Molluscs Protozoa (earthworms, leeches) (spiders, scorpions) (clams, octopus, snails, slugs) Protozoa are tiny, tiny An annelid has no legs and All arachnids have eight legs and Molluscs have soft bodies which animals that we cannot no hard outer skeleton. they do not have antennae. are not segmented. see without the help of a The body of an annelid is Their bodies are made up of two microscope. They live divided into many little parts – the cephalothorax Most molluscs live on water but everywhere – on land, in segments – like rings (where the head is found) and the some live on land.
    [Show full text]
  • Flora Montiberica, 49 (10-X-2011)
    Flora Montiberica 49: 76-81 (X-2011). ISSN 1988-799X APORTACIONES A LA FLORA CESARAUGUSTANA, XI Gonzalo MATEO SANZ*, Juan M. PISCO GARCÍA** & Jesús MARTÍN MONGE*** *Jardín Botánico e Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. C/ Quart, 80. E-46008 Valencia **C/ Soria, 88. E-50300 Calatayud (Zaragoza) ***C/ Las Fuentes, 2, 2º izq. E-50200 Ateca (Zaragoza) RESUMEN: Se comunican los hallazgos de una serie de especies de plantas vasculares detectadas en la provincia de Zaragoza, que resultan novedosas o poco conocidas en la zona. Palabras clave: Plantas vasculares, flora, distribución, Aragón, Zaragoza, España. SUMMARY: Several new or rare taxa of vascular plants found in the province of Zaragoza (Aragón, NE Spain) are here commented. Key words: Vascular plants, flora, distribution, Aragón, Zaragoza, Spain. INTRODUCCIÓN donde tampoco debe ser dema-siado escasa. Con este nuevo artículo retomamos una serie que lanzamos en los noventa y Andrachne telephioides L. quedó frenada con la entrada del nuevo ZARAGOZA: 30TXM4576, Biota, montón siglo, cuyas entregas anteriores son las de tierra en un encinar lineal en la acequia del siguientes: MATEO & PYKE, 1995, 1997, Saso, confluencia con el Canal de Bardenas, 1998; MATEO & MARTÍNEZ, 1996; MA- 440 m, 7-X-2002, Pisco (VAL 145725). TEO, MARTÍNEZ, BUENO & CARRERAS, Se trata de la única localidad conocida 1996; MATEO, MARTÍNEZ & BUENO de la especie en la provincia no apare- (1998); MATEO, MARTÍNEZ & PYKE, ciendo citada en la monografía de Flora 1999; MATEO & PISCO, 2000; MATEO, iberica, y seguramente la más occidental PISCO & MARTÍNEZ, 2000; MATEO, de la Península. Especie rara para Aragón, PISCO & BUENO, 2001.
    [Show full text]
  • Upper Ordovician) at Wequiock Creek, Eastern Wisconsin
    ~rnooij~~~mij~rnoo~ ~oorn~rn~rn~~ rnoo~~rnrn~rn~~ Number 35 September, 1980 Stratigraphy and Paleontology of the Maquoketa Group (Upper Ordovician) at Wequiock Creek, Eastern Wisconsin Paul A. Sivon Department of Geology University of Illinois Urbana, Illinois REVIEW COMMITTEE FOR THIS CONTRIBUTION: T.N. Bayer, Winona State College University, Winona Minnesota M.E. Ostrom, Wisconsin Geological Survey, Madison, Wisconsin Peter Sheehan, Milwaukee Public Museum· ISBN :0-89326-016-4 Milwaukee Public Museum Press Published by the Order of the Board of Trustees Milwaukee Public Museum Accepted for publication July, 1980 Stratigraphy and Paleontology of the Maquoketa Group (Upper Ordovician) at Wequiock Creek, Eastern Wisconsin Paul A. Sivon Department of Geology University of Illinois Urbana, Illinois Abstract: The Maquoketa Group (Upper Ordovician) is poorly exposed in eastern Wisconsin. The most extensive exposure is found along Wequiock Creek, about 10 kilometers north of Green Bay. There the selection includes a small part of the upper Scales Shale and good exposures of the Fort Atkinson Limestone and Brainard Shale. The exposed Scales Shale is 2.4 m of clay, uniform in appearance and containing no apparent fossils. Limestone and dolomite dominate the 3.9 m thick Fort Atkinson Limestone. The carbonate beds alternate with layers of dolomitic shale that contain little to no fauna. The shales represent times of peak terrigenous clastic deposition in a quiet water environment. The car- bonates are predominantly biogenic dolomite and biomicrite. Biotic succession within single carbonate beds includes replacement of a strophomenid-Lepidocyclus dominated bottom community by a trep- ostome bryozoan-Plaesiomys-Lepidocyclus dominated community. Transported echinoderm and cryptostome bryozoan biocalcarenites are common.
    [Show full text]
  • Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution
    Zamora, S., Rahman, I. A., & Smith, A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE, 7(6), [e38296]. https://doi.org/10.1371/journal.pone.0038296 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1371/journal.pone.0038296 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution Samuel Zamora1, Imran A. Rahman2, Andrew B. Smith1* 1 Department of Palaeontology, The Natural History Museum, London, United Kingdom, 2 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom Abstract Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta.
    [Show full text]
  • Las Aguas Mineromedicinales Del Monasterio De Piedra, Nuévalos (Zaragoza) Mineral-Medicinal Waters at the Monasterio De Piedra, Nuévalos (Zaragoza)
    Espacio, Tiempo y Forma, Serie VII, H.a del Arte, t. 17, 2004, págs. 195-213 Las aguas mineromedicinales del Monasterio de Piedra, Nuévalos (Zaragoza) Mineral-Medicinal Waters at the Monasterio de Piedra, Nuévalos (Zaragoza) PILAR BOSQUED LACAMBRA* RESUMEN ABSTRACT El monasterio de Piedra, situado en The monastery of Piedra (Stone), sited in Nuévalos, provincia de Zaragoza, fue Nuévalos, province of Zaragoza, it was a monasterio cisterciense hasta 1835, fecha Cistercian monastery until 1835, date en la que fue desamortizado. Vendido en when it was alienated. Sold in public pública subasta, lo compró Pablo auction, Pablo Muntadas Campeny bought Muntadas Campeny y, a su muerte, lo the monastery and after his death, his son heredó su hijo Juan Federico, quien es el Juan Federico inherited it. Federico was artífice del parque y la piscifactoría. En el the author and artificer of the wonderful año 1869 Federico descubrió de forma park and garden and the fish hatchery. In casual el manantial de aguas 1869 he discovered by chance the spring mineromedicinales que serían conocidas of the minero-medicinal water, that were como de la Peña. Después de obtener la called as spring of the Peña (Rock). After declaración de aguas aptas para su the statement of the spring water as utilidad pública, quiso establecer en el capable to use by public, Federico wanted parque un sanatorio y balneario, pero a do in the park a Sanatorium and watering pesar del intento, sólo logró el comienzo place, but despite the intention, he did only de su proyecto. El manantial fue the beginning of the project.
    [Show full text]