First Zen Architecture Based Commercial Processor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CFD Analyses of a Notebook Computer Thermal Management
PREPRINT. 1 Ilker Tari and Fidan Seza Yalçin, "CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative, IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 2, pp. 443-452 (2010). CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative Ilker Tari, and Fidan Seza Yalcin H Fin height, mm. Abstract— A notebook computer thermal management system L Heat sink vertical length, mm. is analyzed using a commercial CFD software package (ANSYS Nu Nusselt Number. Fluent). The active and passive paths that are used for heat Pr Prandtl Number. dissipation are examined for different steady state operating Ra Rayleigh Number. conditions. For each case, average and hot-spot temperatures of Re Reynolds Number. the components are compared with the maximum allowable T Temperature, °C or K. operating temperatures. It is observed that when low heat W Heat sink width, mm. dissipation components are put on the same passive path, the 2 increased heat load of the path may cause unexpected hot spot g Gravitational acceleration, m/s . 2 temperatures. Especially, Hard Disk Drive (HDD) is susceptible h Convection heat transfer coefficient, W/(m ·K). to overheating and the keyboard surface may reach k Thermal conductivity, W/(m·K). ergonomically undesirable temperatures. Based on the analysis q Heat transfer rate, W. results and observations, a new component arrangement s Fin spacing, mm. considering passive paths and using the back side of the LCD screen is proposed and a simple correlation based thermal Greek Symbols analysis of the proposed system is presented. -
Desktop 3Rd Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, Desktop Intel® Celeron® Processor Family, and LGA1155 Socket
Desktop 3rd Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, Desktop Intel® Celeron® Processor Family, and LGA1155 Socket Thermal Mechanical Specifications and Design Guidelines (TMSDG) January 2013 Document Number: 326767-005 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. -
Thermal Guide: Intel® Xeon® Processor E5 V4 Product Family
Intel® Xeon® Processor E5 v4 Product Family Thermal Mechanical Specification and Design Guide June 2016 Document Number: 333812-002 IntelLegal Lines and Disclaimerstechnologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppal or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548- 4725 or by visiting www.intel.com/design/literature.htm. -
AMD Ryzen™ PRO & Athlon™ PRO Processors Quick Reference Guide
AMD Ryzen™ PRO & Athlon™ PRO Processors Quick Reference guide AMD Ryzen™ PRO Processors with Radeon™ Graphics for Business Laptops (Socket FP6/FP5) 1 Core/Thread Frequency Boost/Base L2+L3 Cache Graphics Node TDP Intel vPro Core/Thread Frequency Boost*/Base L2+L3 Cache Graphics Node TDP AMD PRO technologies COMPARED TO 4.9/1.1 Radeon™ 6/12 UHD AMD Ryzen™ 7 PRO 8/16 Up to 12MB Graphics 7nm 15W intel Intel Core i7 10810U GHz 13MB 4750U 4.1/1.7 GHz CORE i7 14nm 15W (7 Cores) 10th Gen Intel Core i7 10610U 4/8 4.9/1.8 9MB UHD GHz AMD Ryzen™ 7 PRO Up to Radeon™ intel 4/8 6MB 10 12nm 15W 4.8/1.9 3700U 4.0/2.3 GHz Vega CORE i7 Intel Core i7 8665U 4/8 9MB UHD 14nm 15W 8th Gen GHz Radeon™ AMD Ryzen™ 5 PRO 6/12 Up to 11MB Graphics 7nm 15W intel 4.4/1.7 4650U 4.0/2.1 GHz CORE i5 Intel Core i5 10310U 4/8 7MB UHD 14nm 15W GHz (6 Cores) 10th Gen AMD Ryzen™ 5 PRO 4/8 Up to 6MB Radeon™ 12nm 15W intel 4.1/1.6 3500U 3.7/2.1 GHz Vega8 CORE i5 Intel Core i5 8365U 4/8 7MB UHD 14nm 15W th GHz 8 Gen Radeon™ AMD Ryzen™ 3 PRO 4/8 Up to 6MB Graphics 7nm 15W intel 4.1/2.1 4450U 3.7/2.5 GHz CORE i3 Intel Core i3 10110U 2/4 5MB UHD 14nm 15W (5 Cores) 10th Gen GHz AMD Ryzen™ 3 PRO 4/4 Up to 6MB Radeon™ 12nm 15W intel 3.9/2.1 3300U 3.5/2.1 GHz Vega6 CORE i3 Intel Core i3 8145U 2/4 4.5MB UHD 14nm 15W 8th Gen GHz AMD Athlon™ PRO Processors with Radeon™ Vega Graphics for Business Laptops (Socket FP5) AMD Athlon™ PRO Up to Radeon™ intel Intel Pentium 4415U 2/4 2.3 GHz 2.5MB HD 610 14nm 15W 300U 2/4 3.3/2.4 GHz 5MB Vega3 12nm 15W 1. -
Software-Based Undervolting Faults in AMD Zen Processors Fehler in AMD Zen Prozessoren Durch Software-Basierte Unterspannung
Software-based Undervolting Faults in AMD Zen Processors Fehler in AMD Zen Prozessoren durch Software-basierte Unterspannung Bachelorarbeit im Rahmen des Studiengangs IT-Sicherheit der Universität zu Lübeck vorgelegt von Anja Rabich ausgegeben und betreut von Prof. Dr. Thomas Eisenbarth mit Unterstützung von Luca Wilke Lübeck, den 31. August 2020 Abstract Dynamic Voltage and Frequency Scaling (DVFS) is a powerful performance enhance- ment method used by modern processors, allowing them to scale voltage or frequency as needed based on the power requirements of the CPU. This not only saves power, but also prevents processors from overheating. However, the continued integration of soft- ware interfaces giving a user direct access to this functionality has been shown to be a potential security risk, allowing a privileged adversary to indirectly tamper with sensitive computations. This thesis summarizes the results of various papers showing that using DVFS features, unsuitable voltage/frequency values can be set for the processor leading to hardware faults and calculation errors which can be used to undermine the integrity of Trusted Execution Environments (TEE). Results are partially replicated for Intel’s TEE implementation SGX, followed by extending the same methodology to AMD’s Zen Pro- cessors, on which there is currently no information. Results show that undervolting is an unlikely attack vector. iii Zusammenfassung Dynamische Spannungs- und Frequenzskalierung (engl. DVFS) ist ein in modernen Prozessoren vorhandener Leistungs- und Stromverwaltungsmechanismus, womit Span- nung und Frequenz der CPU je nach Bedarf skaliert werden können. Somit wird nicht nur Strom gespart, sondern auch zusätzlich verhindert, dass der Prozessor überhitzt. Die zunehmende Integration von Softwareschnittstellen zu diesen Mechanismen die dem Nutzer Einstellungsmöglichkeiten anbieten, haben sich zunehmend als potenzielle Sicherheitslücke erwiesen. -
Summarizing CPU and GPU Design Trends with Product Data
Summarizing CPU and GPU Design Trends with Product Data Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli Northeastern University Email: fyifansun, agostini, shidong, [email protected] Abstract—Moore’s Law and Dennard Scaling have guided the products. Equipped with this data, we answer the following semiconductor industry for the past few decades. Recently, both questions: laws have faced validity challenges as transistor sizes approach • Are Moore’s Law and Dennard Scaling still valid? If so, the practical limits of physics. We are interested in testing the validity of these laws and reflect on the reasons responsible. In what are the factors that keep the laws valid? this work, we collect data of more than 4000 publicly-available • Do GPUs still have computing power advantages over CPU and GPU products. We find that transistor scaling remains CPUs? Is the computing capability gap between CPUs critical in keeping the laws valid. However, architectural solutions and GPUs getting larger? have become increasingly important and will play a larger role • What factors drive performance improvements in GPUs? in the future. We observe that GPUs consistently deliver higher performance than CPUs. GPU performance continues to rise II. METHODOLOGY because of increases in GPU frequency, improvements in the thermal design power (TDP), and growth in die size. But we We have collected data for all CPU and GPU products (to also see the ratio of GPU to CPU performance moving closer to our best knowledge) that have been released by Intel, AMD parity, thanks to new SIMD extensions on CPUs and increased (including the former ATI GPUs)1, and NVIDIA since January CPU core counts. -
Large Cad Models
Great decisions in product engineering with NX CAE. Learn more on page 11 DtopEng_banner_NXCAE.indd 1 August 2012 / deskeng.com 7/12/12 9:28:46 AM Workstation Upgrades P. 16 Monitor Technology P. 18 Review: HP Z1 All-in-One Workstation P. 20 TECHNOLOGY FOR DESIGN ENGINEERING FOCUS ON: Test & SPEED UP Measurement LARGE CAD MODELS DIRECT DIGITAL MANUFACTURING P. 32 IMPLEMENT MECHATRONIC TESTING P. 38 HOW TO CALIBRATE TEST SENSORS P. 42 CREATE BREAKTHROUGH DESIGNS BLAZING-FAST GEOMETRY PERFORMANCE FOR COMPLEX DESIGNS - THE NEW AMD FIREPRO TM WORKSTATION GRAPHICS RANGE AMD FIREPRO V4900 AMD FIREPRO V5900 AMD FIREPRO V7900 Maximum Performance The Perfect Balance Create Breakthrough Designs For Your Budget ● 2GB GDDR5 memory (64 GB/s) ● 2GB GDDR5 memory (160 GB/s) ● 1GB GDDR5 memory (64 GB/s) ● 512 Stream Processors ● 1280 Stream Processors ● 480 Stream Processors ● 2 x DisplayPort 1.2, 1 x DVI outputs ● 4 x DisplayPort 1.2 ● 2 x DisplayPort 1.2,1 x DVI outputs ● Support up to 3 displays ● Support up to 4 displays ● Support up to 3 displays ● GeometryBoost ● GeometryBoost ● AMD PowerTune ● AMD PowerTune ● 3D Stereoscopic support ● Framelock, Genlock support AMD FEATURED TECHNOLOGIES “I have been using three and ● Certified and optimized: for all major 3D applications for high four-monitor configurations for a performance and reliability while now, and I can tell you that once you try it, you won’t want ● GeometryBoost Technology: Helps ensure smooth handling of to go back to just two.” complex, highly tessellated models Jason Lewis, CG Channel ● AMD PowerTune Technology: Optimizes power usage in real-time based on current workflow demands ● AMD Eyefinity Technology: Run up to 4 monitors from a single graphics card, boosting productivity by viewing entire workflows Find out more at amd.com/firepronextgen © 2011 Advanced Micro Devices, Inc. -
High Performance Linpack Benchmark on AMD EPYC™ Processors
High Performance Linpack Benchmark on AMD EPYC™ Processors This document details running the High Performance Linpack (HPL) benchmark using the AMD xhpl binary. HPL Implementation: The HPL benchmark presents an opportunity to demonstrate the optimal combination of multithreading (via the OpenMP library) and MPI for scientific and technical high-performance computing on the EPYC architecture. For MPI applications where the per-MPI-rank work can be further parallelized, each L3 cache is an MPI rank running a multi-threaded application. This approach results in fewer MPI ranks than using one rank per core, and results in a corresponding reduction in MPI overhead. The ideal balance is for the number of threads per MPI rank to be less than or equal to the number of CPUs per L3 cache. The exact maximum thread count per MPI rank depends on both the specific EPYC SKU (e.g. 32 core parts have 4 physical cores per L3, 24 core parts have 3 physical cores per L3) and whether SMT is enabled (e.g. for a 32 core part with SMT enabled there are 8 CPUs per L3). HPL performance is primarily determined by DGEMM performance, which is in turn primarily determined by SIMD throughput. The Zen microarchitecture of the EPYC processor implements one SIMD unit per physical core. Since HPL is SIMD limited, when SMT is enabled using a second HPL thread per core will not directly improve HPL performance. However, leaving SMT enabled may indirectly allow slightly higher performance (1% - 2%) since the OS can utilize the SMT siblings as needed without pre-empting the HPL threads. -
Intel® Atom Processor 200 Series Mechanical, and Thermal Design
Intel® Atom™ Processor 200 Series Thermal and Mechanical Design Guidelines — Supporting nettop platform for 2008 June 2008 Document Number: 319979-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. -
Intel® Celeron™ P4000 and U3000 Mobile Processor Series
Intel® Celeron™ P4000 and U3000 Mobile Processor Series External Design Specification — Volume One This is volume 1 of 2. Refer to Document 416057 for Volume 2 Rev 1.5 March 2010 Intel Confidential Document Number:442690 INFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. -
AMD's Early Processor Lines, up to the Hammer Family (Families K8
AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) Dezső Sima October 2018 (Ver. 1.1) Sima Dezső, 2018 AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) • 1. Introduction to AMD’s processor families • 2. AMD’s 32-bit x86 families • 3. Migration of 32-bit ISAs and microarchitectures to 64-bit • 4. Overview of AMD’s K8 – K10.5 (Hammer-based) families • 5. The K8 (Hammer) family • 6. The K10 Barcelona family • 7. The K10.5 Shanghai family • 8. The K10.5 Istambul family • 9. The K10.5-based Magny-Course/Lisbon family • 10. References 1. Introduction to AMD’s processor families 1. Introduction to AMD’s processor families (1) 1. Introduction to AMD’s processor families AMD’s early x86 processor history [1] AMD’s own processors Second sourced processors 1. Introduction to AMD’s processor families (2) Evolution of AMD’s early processors [2] 1. Introduction to AMD’s processor families (3) Historical remarks 1) Beyond x86 processors AMD also designed and marketed two embedded processor families; • the 2900 family of bipolar, 4-bit slice microprocessors (1975-?) used in a number of processors, such as particular DEC 11 family models, and • the 29000 family (29K family) of CMOS, 32-bit embedded microcontrollers (1987-95). In late 1995 AMD cancelled their 29K family development and transferred the related design team to the firm’s K5 effort, in order to focus on x86 processors [3]. 2) Initially, AMD designed the Am386/486 processors that were clones of Intel’s processors. -
AMD Raven Ridge
DELIVERING A NEW LEVEL OF VISUAL PERFORMANCE IN AN SOC AMD “RAVEN RIDGE” APU Dan Bouvier, Jim Gibney, Alex Branover, Sonu Arora Presented by: Dan Bouvier Corporate VP, Client Products Chief Architect AMD CONFIDENTIAL RAISING THE BAR FOR THE APU VISUAL EXPERIENCE Up to MOBILE APU GENERATIONAL 200% MORE CPU PERFORMANCE PERFORMANCE GAINS Up to 128% MORE GPU PERFORMANCE Up to 58% LESS POWER FIRST “Zen”-based APU CPU Performance GPU Performance Power HIGH-PERFORMANCE AMD Ryzen™ 7 2700U 7th Gen AMD A-Series APU On-die “Vega”-based graphics Scaled GPU Managed Improved Upgraded Increased LONG BATTERY LIFE and CPU up to power delivery memory display package Premium form factors reach target and thermal bandwidth experience performance frame rate dissipation efficiency density 2 | AMD Ryzen™ Processors with Radeon™ Vega Graphics - Hot Chips 30 | * See footnotes for details. “RAVEN RIDGE” APU AMD “ZEN” x86 CPU CORES CPU 0 “ZEN” CPU CPU 1 (4 CORE | 8 THREAD) USB 3.1 NVMe PCIe FULL PCIe GPP ----------- ----------- Discrete SYSTEM 4MB USB 2.0 SATA GFX CONNECTIVITY CPU 2 CPU 3 L3 Cache X64 DDR4 HIGH BANDWIDTH SOC FABRIC System Infinity Fabric & MEMORY Management SYSTEM Unit ACCELERATED Platform Multimedia Security MULTIMEDIA Processor Engines AMD GFX+ 1MB L2 EXPERIENCE X64 DDR4 (11 COMPUTE UNITS) Cache Video Audio Sensor INTEGRATED CU CU CU CU CU CU Display Codec ACP Fusion Controller Next SENSOR Next Hub FUSION HUB CU CU CU CU CU AMD “VEGA” GPU UPGRADED DISPLAY ENGINE 3 | AMD Ryzen™ Processors with Radeon™ Vega Graphics - Hot Chips 30 | SIGNIFICANT DENSITY INCREASE “Raven Ridge” die BGA Package: 25 x 35 x 1.38mm Technology: GLOBALFOUNDRIES 14nm – 11 layer metal Transistor count: 4.94B 59% 16% Die Size: 209.78mm2 more transistors smaller die than prior generation “Bristol Ridge” APU 4 | AMD Ryzen™ Processors with Radeon™ Vega Graphics - Hot Chips 30 | * See footnotes for details.