DISSERTATION DOCTEUR DE L UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE Diego KREUTZ Dissertation Defence Committee

Total Page:16

File Type:pdf, Size:1020Kb

DISSERTATION DOCTEUR DE L UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE Diego KREUTZ Dissertation Defence Committee PhD-FSTM-2020-52 The Faculty of Sciences, Technology and Medicine DISSERTATION Defence held on 15/09/2020 in Luxembourg to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE by Diego KREUTZ Born on 29 November 1979 in Santa Rosa (Brazil) LOGICALLY CENTRALIZED SECURITY FOR ​ ​ ​ ​ ​ ​ ​ SOFTWARE-DEFINED NETWORKING ​ ​ ​ ​ ​ Dissertation defence committee Dr Paulo Esteves-Veríssimo, dissertation supervisor Professor, Université du Luxembo​urg Dr Björn Ottersten, Chairman Professor, Université du Luxembourg Dr Radu State, Vice Chairman ​ Associate Professor, Université du Luxembourg Dr Jennifer Rexford Professor, Princeton University Dr Sandra Scott-Hayward, Lecturer, Queen’s University Be​ lfast Acknowledgements I am very proud of and grateful to my supervisors Paulo Esteves-Veríssimo and Fernando M. V. Ramos because I have learned so much with them. One of the few things I am sure of is my eternal debt with them. I am (arguably) sure I am a better researcher now because of them. In fact, I am still learning everyday something new with them. Paulo was also an awesome sort of coach in my personal life as well. He is an impressively smart and knowledgeable person. I have to say, in some ways, he is indeed better than a regular doctor. I know that (probably) just me and him will truly understand the meaning of this statement. IhadoneofthemostinterestingandproductivetimesafterImetJiangshan Yu. He is a very smart, easy going and inspiring researcher and person. Because of him, I started to better understand and to have joy in designing security protocols. JY inspired me in different ways. I consider myself lucky to have met him. I cannot forget to mention Natalie Kirf, Jessica Giro and the BED in general. Jessica Giro was of outstanding administrative support inside the University of Luxembourg. Jessica managed to figure out and propose simple and straightfor- ward solutions to every single hurdle during my affiliation with the University. I must say I am really lucky to have met such sympathetic, positive and professional people like Jessica, always ready to help us in the best way possible. Ihavenowordstothankmyfamily,friendsandgodfortheconstantsupport and comfort. I have to gratefully thank my wife (Rosa Maria) and my mother (Elizabeta Ilzi). Their unbelievably strong faith (and energy) made me arguably stronger at the last minute, when I really needed it. Truth to be said, family and friends are two of the most important things in my life. During the past few years, both my family and friends were of utter most importance to get through the different health issues I had. I got through all of it because of them, no doubt. Finally, I feel the need to mention some friends of mine, that helped me in different ways through out this journey, namely Vinicius Vielmo Cogo, Laly Ortiz, Pedro Costa, Wojciech Agzo, Alberto Mengali, Danilo Spano, Grabiela Gregory, Sina Maleki, Divane Marcon, and Jader Franklin (a.k.a., Deko). Their warmth friendship made me a better person and provided me joy and comfort in several moments of my journey. ii Declaration I, Diego Kreutz, declare that this thesis “Logically centralized security for Software- Defined Networking” and the work presented therein are my own. I confirm that: • this work was done wholly or mainly while in candidature for the degree Docteur de l’Université du Luxembourg; • where any part of this thesis has previously been submitted for a degree or any other qualification at this university or any other institution, this has been clearly stated; • where I have consulted the published works of others, these are clearly at- tributed; • where I have quoted from the works of others, the sources are always given; • where the work presented in this thesis is based on work done by myself jointly with others, I have clearly outlined what was done by others and what I contributed; • with the exception of such quotations, this is entirely my own work; and • I have acknowledged all main sources of help. Signed: Date: iii Abstract Software-Defined Networking (SDN) decouples the control and data planes of tra- ditional networks, logically centralizing the functional properties of the network in the SDN controller. While this centralization brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. Until now, SDN research has essentially been concerned with the functional side, despite some specific works relating to non-functional properties like ‘security’, ‘dependability’, or ‘quality of service’. Security is an essential non-functional property of SDN. The lack of reliable security by-design mechanisms can quickly lead to the compromise of the entire network. For instance, most of the current security mechanisms in SDN con- trollers lead to exploitable vulnerabilities that allow adversaries to easily control or even shut down the entire control plane. The growing concern regarding insider threats substantially amplifies the problem. The reason lies in the fact that cur- rent Software-Defined Networks (SDNs) (e.g., OpenFlow-enabled networks) rely on weak protection mechanisms. To address these crucial security issues in the SDN control plane, it is necessary, though not sufficient, that we start by securely identifying, authenticating, and authorizing all devices before allowing them to become part of the network. Though SDN security is the central tenet of this thesis, we believe that the problem is much more generic. In essence, there is still a lack of a systematic approach to ensuring such relevant non-functional properties as security, depend- ability, or quality of service. Current approaches are mostly ad-hoc and piecemeal, which has led to efficiency and effectiveness problems. This reflection led us to claim that the successful enforcement of non-functional properties as a pillar of SDN robustness calls for a systematic approach. We further advocate, for its materialization, the re-iteration of the successful formula behind SDN– ‘logical centralization’. In consequence, we propose ANCHOR,asubsystemarchitectureforSDNthat promotes the logical centralization of non-functional properties. We start by pre- senting the general concept and architectural principles, suggesting how they can satisfactorily enhance the current state of the art with regard to any non-functional property (security, dependability, performance, quality of service, etc.). We claim and justify that centralizing such mechanisms is vital for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforce- ment mechanisms; and finally, better foster the resilience of the architecture itself. We focus on ‘security’ as a use case in the rest of the thesis, discussing the special- ization of the ANCHOR architecture to logically-centralized enforcement of security iv properties. However, by presenting a principled solution to the main problem of the thesis (SDN security), we also show the effectiveness of the general ANCHOR concept, opening avenues for further research on its extension to other desirable non-functional properties, such as dependability and Quality of Service (QoS). We identify the current security gaps in SDNs, and investigate the adequate security mechanisms that should populate the architecture middleware, globally and consistently. ANCHOR sets out to provide — in a homogeneous manner to all controllers and forwarding devices — essential security mechanisms such as strong entropy, resilient pseudo-random generators, secure device registration, associa- tion and recommendation, amongst other crucial services. We present the design of those mechanisms and protocols. With the objective of promoting generalized use of encryption and authentication in the control plane, we additionally pro- pose and describe a secure control plane communication infrastructure, Keep It Simple and Secure (KISS), based on a novel lightweight mechanism for generating cryptographic secrets — integrated Device Verification Value (iDVV). iDVV can be used in a number of ways, in a number of protocols, and outperforms widely used alternatives. In the context of this thesis, the KISS infrastructure is set up by ANCHOR and used to ensure the security of interactions amongst it, controllers and forwarding devices. Being conceptually logically-centralized, ANCHOR presents a single-point-of- failure (SPoF) challenge, which we address, through incremental measures, some of which can be selectively present in concrete designs. As a baseline, we harden the design, by endowing it with robust functions in the different modules. We increase assurance by discussing and informally proving correctness of all mech- anisms and algorithms, and we also formally verify the main algorithms through aproof-assistant.Byonlyusingsymmetriccryptography,wemakethesystem Post-Quantum Secure (PQS). We also embed measures to achieve Perfect For- ward Secrecy (PFS) in all algorithms, protecting pre-compromise communications in the presence of successful attacks. Finally, for higher criticality systems, we take additional algorithmic and architectural measures to mitigate the effects of pos- sible security failures. We provide for Post-Compromise Security (PCS) through the semi-automatic restart of operation after a full compromise of ANCHOR.We present as well
Recommended publications
  • Arguments for an End-Middle-End Internet
    CHASING EME: ARGUMENTS FOR AN END-MIDDLE-END INTERNET A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Saikat Guha August 2009 c 2009 Saikat Guha ALL RIGHTS RESERVED CHASING EME: ARGUMENTS FOR AN END-MIDDLE-END INTERNET Saikat Guha, Ph.D. Cornell University 2009 Connection establishment in the Internet has remained unchanged from its orig- inal design in the 1970s: first, the path between the communicating endpoints is assumed to always be open. It is assumed that an endpoint can reach any other endpoint by simply sending a packet addressed to the destination. This assumption is no longer borne out in practice: Network Address Translators (NATs) prevent all hosts from being addressed, firewalls prevent all packets from being delivered, and middleboxes transparently intercept packets with- out endpoint knowledge. Second, the Internet strives to deliver all packets ad- dressed to a destination regardless of whether the packet is ultimately desired by the destination or not. Denial of Service (DoS) attacks are therefore common- place, and the Internet remains vulnerable to flash worms. This thesis presents the End-Middle-End (EME) requirements for connec- tion establishment that the modern Internet should satisfy, and explores the de- sign space of a signaling-based architecture that meets these requirements with minimal changes to the existing Internet. In so doing, this thesis proposes so- lutions to three real-world problems. First, it focuses on the problem of TCP NAT Traversal, where endpoints behind their respective NATs today cannot es- tablish a direct TCP connection with each other due to default NAT behavior.
    [Show full text]
  • Democratizing Content Distribution
    Democratizing content distribution Michael J. Freedman New York University Primary work in collaboration with: Martin Casado, Eric Freudenthal, Karthik Lakshminarayanan, David Mazières Additional work in collaboration with: Siddhartha Annapureddy, Hari Balakrishnan, Dan Boneh, Nick Feamster, Scott Garriss, Yuval Ishai, Michael Kaminsky, Brad Karp, Max Krohn, Nick McKeown, Kobbi Nissim, Benny Pinkas, Omer Reingold, Kevin Shanahan, Scott Shenker, Ion Stoica, and Mythili Vutukuru Overloading content publishers Feb 3, 2004: Google linked banner to “julia fractals” Users clicked onto University of Western Australia web site …University’s network link overloaded, web server taken down temporarily… Adding insult to injury… Next day: Slashdot story about Google overloading site …UWA site goes down again Insufficient server resources Browser Browser Origin Server Browser Browser Browser Browser Browser Browser Many clients want content Server has insufficient resources Solving the problem requires more resources Serving large audiences possible… Where do their resources come from? Must consider two types of content separately • Static • Dynamic Static content uses most bandwidth Dynamic HTML: 19.6 KB Static content: 6.2 MB 1 flash movie 5 style sheets 18 images 3 scripts Serving large audiences possible… How do they serve static content? Content distribution networks (CDNs) Centralized CDNs Static, manual deployment Centrally managed Implications: Trusted infrastructure Costs scale linearly Not solved for little guy Browser Browser Origin Server Browser Browser Browser Browser Browser Browser Problem: Didn’t anticipate sudden load spike (flash crowd) Wouldn’t want to pay / couldn’t afford costs Leveraging cooperative resources Many people want content Many willing to mirror content e.g., software mirrors, file sharing, open proxies, etc.
    [Show full text]
  • Enterprise Tech 30—The 2021 List
    Enterprise Tech 30—The 2021 List Rajeev Chand Partner Head of Research The Enterprise Tech 30 is an exclusive list of the most promising private Peter Wagner companies in enterprise technology. The list, which is in its third year, is Founding Partner based on an institutional research and survey process with 103 leading venture capitalists, who are identified and invited based on their track Jake Flomenberg Partner record, expertise, and reputation for discernment. Olivia Rodberg The Enterprise Tech 30 is now a platform for the startup community: a Research Associate watershed recognition for the 30 companies and a practical and February 24, 2021 invaluable resource for customers, partners, journalists, prospective team members, service providers, and deal makers, among others. We are pleased to present the Enterprise Tech 30 for 2021. Wing Venture Capital 480 Lytton Avenue Palo Alto, CA 94301 Early Mid Late 1. Modern Treasury 1. Zapier 1. HashiCorp 2. Privacera 2. Fishtown Analytics 2. Stripe 3. Roam Research 3. Retool 3. Databricks 4. Panther Labs 4. Netlify 4. GitLab 5. Snorkel AI 5. Notion 5. Airtable 6. Linear 6. Grafana Labs 6. Figma 7. ChartHop 7. Abnormal Security 7. Confluent 8. Substack 8. Gatsby 8. Canva 9. Monte Carlo 9. Superhuman 9. LaunchDarkly 10. Census 10. Miro 10. Auth0 Special Calendly 1 2021 The Curious Case of Calendly This year’s Enterprise Tech 30 has 31 companies rather than 30 due to the “curious case” of Calendly. Calendly, a meeting scheduling company, was categorized as Early-Stage when the ET30 voting process started on January 11 as the company had raised $550,000.
    [Show full text]
  • Managing Large-Scale, Distributed Systems Research Experiments with Control-Flows Tomasz Buchert
    Managing large-scale, distributed systems research experiments with control-flows Tomasz Buchert To cite this version: Tomasz Buchert. Managing large-scale, distributed systems research experiments with control-flows. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Lorraine, 2016. English. tel- 01273964 HAL Id: tel-01273964 https://tel.archives-ouvertes.fr/tel-01273964 Submitted on 15 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École doctorale IAEM Lorraine MANAGINGLARGE-SCALE,DISTRIBUTED SYSTEMSRESEARCHEXPERIMENTSWITH CONTROL-FLOWS THÈSE présentée et soutenue publiquement le 6 janvier 2016 pour l’obtention du DOCTORATDEL’UNIVERSITÉDELORRAINE (mention informatique) par TOMASZBUCHERT Composition du jury : Rapporteurs Christian Pérez, Directeur de recherche Inria, LIP, Lyon Eric Eide, Research assistant professor, Univ. of Utah Examinateurs François Charoy, Professeur, Université de Lorraine Olivier Richard, Maître de conférences, Univ. Joseph Fourier, Grenoble Directeurs de thèse Lucas Nussbaum, Maître de conférences, Université de Lorraine Jens Gustedt, Directeur de recherche Inria, ICUBE, Strasbourg Laboratoire Lorrain de Recherche en Informatique et ses Applications – UMR 7503 ABSTRACT(ENGLISH) Keywords: distributed systems, large-scale experiments, experiment control, busi- ness processes, experiment provenance Running experiments on modern systems such as supercomputers, cloud infrastructures or P2P networks became very complex, both technically and methodologically.
    [Show full text]
  • Software-Defined Networking: Improving Security for Enterprise
    Software-defined Networking: Improving Security for Enterprise and Home Networks by Curtis R. Taylor A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Computer Science by May 2017 APPROVED: Professor Craig A. Shue, Dissertation Advisor Professor Craig E. Wills, Head of Department Professor Mark Claypool, Committee Member Professor Thomas Eisenbarth, Committee Member Doctor Nathanael Paul, External Committee Member Abstract In enterprise networks, all aspects of the network, such as placement of security devices and performance, must be carefully considered. Even with forethought, networks operators are ulti- mately unaware of intra-subnet traffic. The inability to monitor intra-subnet traffic leads to blind spots in the network where compromised hosts have unfettered access to the network for spreading and reconnaissance. While network security middleboxes help to address compromises, they are limited in only seeing a subset of all network traffic that traverses routed infrastructure, which is where middleboxes are frequently deployed. Furthermore, traditional middleboxes are inherently limited to network-level information when making security decisions. Software-defined networking (SDN) is a networking paradigm that allows logically centralized control of network switches and routers. SDN can help address visibility concerns while providing the benefits of a centralized network control platform, but traditional switch-based SDN leads to concerns of scalability and is ultimately limited in that only network-level information is available to the controller. This dissertation addresses these SDN limitations in the enterprise by pushing the SDN functionality to the end-hosts. In doing so, we address scalability concerns and provide network operators with better situational awareness by incorporating system-level and graphical user interface (GUI) context into network information handled by the controller.
    [Show full text]
  • A Defense Framework Against Denial-Of-Service in Computer Networks
    A DEFENSE FRAMEWORK AGAINST DENIAL-OF-SERVICE IN COMPUTER NETWORKS by Sherif Khattab M.Sc. Computer Science, University of Pittsburgh, USA, 2004 B.Sc. Computer Engineering, Cairo University, Egypt, 1998 Submitted to the Graduate Faculty of the Department of Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH DEPARTMENT OF COMPUTER SCIENCE This dissertation was presented by Sherif Khattab It was defended on June 25th, 2008 and approved by Prof. Rami Melhem, Department of Computer Science Prof. Daniel Moss´e,Department of Computer Science Prof. Taieb Znati, Department of Computer Science Prof. Prashant Krishnamurthy, School of Information Sciences Dissertation Advisors: Prof. Rami Melhem, Department of Computer Science, Prof. Daniel Moss´e,Department of Computer Science ii A DEFENSE FRAMEWORK AGAINST DENIAL-OF-SERVICE IN COMPUTER NETWORKS Sherif Khattab, PhD University of Pittsburgh, 2008 Denial-of-Service (DoS) is a computer security problem that poses a serious challenge to trustworthiness of services deployed over computer networks. The aim of DoS attacks is to make services unavailable to legitimate users, and current network architectures allow easy-to-launch, hard-to-stop DoS attacks. Particularly challenging are the service-level DoS attacks, whereby the victim service is flooded with legitimate-like requests, and the jamming attack, in which wireless communication is blocked by malicious radio interference. These attacks are overwhelming even for massively-resourced services, and effective and efficient defenses are highly needed. This work contributes a novel defense framework, which I call dodging, against service- level DoS and wireless jamming.
    [Show full text]
  • Chasing Eme: Arguments for an End-Middle-End Internet
    CHASING EME: ARGUMENTS FOR AN END-MIDDLE-END INTERNET A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Saikat Guha August 2009 c 2009 Saikat Guha ALL RIGHTS RESERVED CHASING EME: ARGUMENTS FOR AN END-MIDDLE-END INTERNET Saikat Guha, Ph.D. Cornell University 2009 Connection establishment in the Internet has remained unchanged from its orig- inal design in the 1970s: first, the path between the communicating endpoints is assumed to always be open. It is assumed that an endpoint can reach any other endpoint by simply sending a packet addressed to the destination. This assumption is no longer borne out in practice: Network Address Translators (NATs) prevent all hosts from being addressed, firewalls prevent all packets from being delivered, and middleboxes transparently intercept packets with- out endpoint knowledge. Second, the Internet strives to deliver all packets ad- dressed to a destination regardless of whether the packet is ultimately desired by the destination or not. Denial of Service (DoS) attacks are therefore common- place, and the Internet remains vulnerable to flash worms. This thesis presents the End-Middle-End (EME) requirements for connec- tion establishment that the modern Internet should satisfy, and explores the de- sign space of a signaling-based architecture that meets these requirements with minimal changes to the existing Internet. In so doing, this thesis proposes so- lutions to three real-world problems. First, it focuses on the problem of TCP NAT Traversal, where endpoints behind their respective NATs today cannot es- tablish a direct TCP connection with each other due to default NAT behavior.
    [Show full text]
  • From Ethane to SDN and Beyond
    From Ethane to SDN and Beyond Martín Casado Nick McKeown Scott Shenker Andreessen Horowitz Stanford University University of California, Berkeley [email protected] [email protected] [email protected] This article is an editorial note submitted to CCR. It has NOT been peer reviewed. The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online. ABSTRACT and expensive, and internally they were based on old engineering We briefly describe the history behind the Ethane paper andits practices and poorly defined APIs. ultimate evolution into SDN and beyond. Yet, most customers only used a handful of these features. One approach would have been to completely redesign the router hard- CCS CONCEPTS ware and software around cleaner APIs, better abstractions, and modern software practices. But time-to-market pressures meant • Networks → Network architectures; Network types; they couldn’t start over with a simpler design. And while in other industries startups can enter the market with more efficient ap- KEYWORDS proaches, the barrier to entry in the router business had been made Software Defined Networks (SDN) so tall that there was little chance for significant innovation. Instead, the router vendors continued to fight problems of reliability and security brought on by overwhelming complexity. The research 1 THE ETHANE STORY community, sensing the frustration and struggling to get new ideas SDN is often described as a revolutionary architectural approach adopted, labeled the Internet as “ossified” and unable to change. In to building networks; after all, it was named and first discussed in response, they started research programs like NewArch [7], GENI the context of research.
    [Show full text]
  • Reducing Faulty Executions of Distributed Systems
    Reducing Faulty Executions of Distributed Systems by Robert Colin Butler Scott A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Scott Shenker, Chair Professor George Necula Professor Sylvia Ratnasamy Professor Tapan Parikh Summer 2016 Reducing Faulty Executions of Distributed Systems Copyright 2016 by Robert Colin Butler Scott 1 Abstract Reducing Faulty Executions of Distributed Systems by Robert Colin Butler Scott Doctor of Philosophy in Computer Science University of California, Berkeley Professor Scott Shenker, Chair When confronted with a buggy execution of a distributed system—which are com- monplace for distributed systems software—understanding what went wrong requires significant expertise, time, and luck. As the first step towards fixing the underlying bug, software developers typically start debugging by manually separating out events that are responsible for triggering the bug (signal) from those that are extraneous (noise). In this thesis, we investigate whether it is possible to automate this separation pro- cess. Our aim is to reduce time and effort spent on troubleshooting, and we do so by eliminating events from buggy executions that are not causally related to the bug, ideally producing a “minimal causal sequence” (MCS) of triggering events. We show that the general problem of execution minimization is intractable, but we develop, formalize, and empirically validate a set of heuristics—for both partially instru- mented code, and completely instrumented code—that prove effective at reducing execu- tion size to within a factor of 4.6X of minimal within a bounded time budget of 12 hours.
    [Show full text]
  • SV Angel - RC Current Investments As of 11/22/2011
    SV Angel - RC Current Investments as of 11/22/2011 Investment Sector Company Description Founder(s) City Date Other Investors LBS/Mobile Ntro Service for meeting new people based on location and Josh Resnick LA Mar 03 2011 Initial Capital, Baroda (nProgress) interests Ventures, WGI, Jarl Mohn, Angels LBS/Mobile foursquare Location-based mobile app with gaming elements Dennis Crowley, NY Sep 29 2009 Andreessen Horowitz,Union Naveen Selvadurai Square Ventures, OATV LBS/Mobile App.net Mobile photo sharing platform Dalton Caldwell SF Feb 03 2010 Accel Partners, Morgenthaler, Gideon Yu, Alex Zubillaga LBS/Mobile Jawbone *via High-end bluetooth audio accessories Alexander Asseily, SF Andreessen Horowitz, Khosla Advisor Hosain Rahman Ventures, Sequoia Capital LBS/Mobile Lovely Marketplace/search for real estate renters Blake Pierson SF Apr 29 2010 Founder Collective, Keith Rabois, Ben Ling, Alex Zubillaga LBS/Mobile One Mobile LBS app to connect with people around you based on Cory Levy, Michael SF Mar 17 2011 CRV, True Ventures, General common interests Callahan Catalyst, Keith Rabois LBS/Mobile PhoneTell Intuitive word search dialing, engaging mobile users in Wendell Brown, SF Nov 19 2009 Angels dynamic phone call interactions Steve Larson LBS/Mobile RollCall Short form party planning allowing users to share plans with Chuck Lam, Ibrahim SF Jun 10 2010 Deep Nishar, Paul Buchheit, friends Okuyucu XG Ventures LBS/Mobile SimpleGeo Geo and alternate reality platform for apps Joe Stump, Matt SF Nov 25 2009 First Round Capital, Redpoint Galligan
    [Show full text]
  • Contents U U U
    Contents u u u ACM Awards Reception and Banquet, June 2018 .................................................. 2 Introduction ......................................................................................................................... 3 A.M. Turing Award .............................................................................................................. 4 ACM Prize in Computing ................................................................................................. 5 ACM Charles P. “Chuck” Thacker Breakthrough in Computing Award ............. 6 ACM – AAAI Allen Newell Award .................................................................................. 7 Software System Award ................................................................................................... 8 Grace Murray Hopper Award ......................................................................................... 9 Paris Kanellakis Theory and Practice Award ...........................................................10 Karl V. Karlstrom Outstanding Educator Award .....................................................11 Eugene L. Lawler Award for Humanitarian Contributions within Computer Science and Informatics ..........................................................12 Distinguished Service Award .......................................................................................13 ACM Athena Lecturer Award ........................................................................................14 Outstanding Contribution
    [Show full text]
  • Using All Networks Around Us
    USING ALL NETWORKS AROUND US A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Kok-Kiong Yap March 2013 c Copyright by Kok-Kiong Yap 2013 All Rights Reserved ii iv The very tool of fairness is sufficient for systematic unfairness. v vi Abstract Our smartphones are increasingly becoming loaded with more applications and equipped with more network interfaces|3G, 4G, WiFi. The exponential increase in applications for mobile devices has powered unprecedented growth for mobile networks. Mobile operating system and mobile network infrastructure are struggling to cope with this growth. In this thesis, I advocate that we use all of the networks around us. Our smartphones are already equipped with multiple radios that can connect us to multiple networks at the same time. By using those connections, we can open up tremendous capacity and coverage to better serve users, applications, and network operators alike. If done right, this will provide mobile users with seamless connectivity, faster connections, even lower charges and smaller energy footprints. To do so, we must first overcome several technical challenges that I will be describing in this dissertation, along with their proposed solutions. 1. I design a client network stack that allows the applications to migrate flows from one network to another, aggregates bandwidth across multiple networks to achieve faster connections and provides applications with flexible control over interface choices. I also present a prototype of this client network stack|called Hercules|to demonstrate its viability and usefulness.
    [Show full text]