Mouse Trnp1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Trnp1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Trnp1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Trnp1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Trnp1 gene (NCBI Reference Sequence: NM_001081156 ; Ensembl: ENSMUSG00000056596 ) is located on Mouse chromosome 4. 2 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 1 (Transcript: ENSMUST00000125541). Exon 1 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Trnp1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-392E4 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 starts from about 100% of the coding region. The knockout of Exon 1 will result in frameshift of the gene. The size of effective cKO region: ~840 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm cKO region Exon of mouse Trnp1 loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(6923bp) | A(21.51% 1489) | C(25.13% 1740) | T(25.16% 1742) | G(28.2% 1952) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr4 - 133498551 133501550 3000 browser details YourSeq 147 512 916 3000 93.0% chr7 - 29034252 29034973 722 browser details YourSeq 128 515 829 3000 89.0% chr9 - 75338434 75595431 256998 browser details YourSeq 127 682 918 3000 93.2% chr3 + 151763496 151763815 320 browser details YourSeq 120 669 893 3000 93.3% chr17 - 73465688 73466366 679 browser details YourSeq 113 682 905 3000 91.2% chr14 - 117370954 117371228 275 browser details YourSeq 109 682 919 3000 88.6% chr11 - 108134811 108135045 235 browser details YourSeq 109 682 872 3000 86.2% chr2 + 128741490 128741673 184 browser details YourSeq 108 747 933 3000 90.6% chr1 - 71733593 71733931 339 browser details YourSeq 107 682 919 3000 92.3% chr1 - 40341014 40341357 344 browser details YourSeq 107 669 933 3000 81.4% chr1 + 159757820 159757972 153 browser details YourSeq 104 682 921 3000 94.2% chr5 + 116810116 116810495 380 browser details YourSeq 103 754 919 3000 89.7% chr7 - 29034169 29034508 340 browser details YourSeq 102 742 910 3000 96.6% chr10 - 21177260 21177491 232 browser details YourSeq 102 757 919 3000 84.7% chr1 - 24331348 24331492 145 browser details YourSeq 98 754 919 3000 93.0% chr6 - 126189372 126189861 490 browser details YourSeq 97 682 915 3000 80.6% chr3 - 150146575 150146694 120 browser details YourSeq 95 682 916 3000 93.7% chr16 + 93984082 93984477 396 browser details YourSeq 95 740 928 3000 95.5% chr1 + 193496371 193496568 198 browser details YourSeq 94 742 885 3000 93.7% chr1 - 36968320 36968650 331 Note: The 3000 bp section upstream of Exon 1 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr4 - 133494628 133497627 3000 browser details YourSeq 43 1003 1071 3000 82.7% chr14 + 116022593 116022658 66 browser details YourSeq 40 1914 1974 3000 97.7% chr5 + 134455776 134455980 205 browser details YourSeq 38 1006 1067 3000 93.2% chr1 - 161490345 161490414 70 browser details YourSeq 32 997 1031 3000 87.9% chr17 + 59961445 59961477 33 browser details YourSeq 30 1002 1031 3000 100.0% chr3 + 156916474 156916503 30 browser details YourSeq 30 1002 1031 3000 100.0% chr14 + 11954944 11954973 30 browser details YourSeq 30 2632 2676 3000 86.2% chr11 + 97103323 97103366 44 browser details YourSeq 28 2643 2675 3000 93.8% chr16 + 56896101 56896133 33 browser details YourSeq 28 1958 1985 3000 100.0% chr11 + 68623429 68623456 28 browser details YourSeq 27 1004 1031 3000 100.0% chr15 - 7354308 7354342 35 browser details YourSeq 26 2618 2653 3000 86.2% chr19 - 40707901 40707936 36 browser details YourSeq 26 999 1031 3000 80.7% chr3 + 97048659 97048689 31 browser details YourSeq 25 2641 2671 3000 90.4% chr2 - 27832066 27832096 31 browser details YourSeq 25 1008 1034 3000 88.5% chr17 + 26998016 26998041 26 Note: The 3000 bp section downstream of Exon 1 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Trnp1 TMF1-regulated nuclear protein 1 [ Mus musculus (house mouse) ] Gene ID: 69539, updated on 12-Aug-2019 Gene summary Official Symbol Trnp1 provided by MGI Official Full Name TMF1-regulated nuclear protein 1 provided by MGI Primary source MGI:MGI:1916789 See related Ensembl:ENSMUSG00000056596 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Trnp; 2300002D11Rik Expression Biased expression in cerebellum adult (RPKM 22.7), frontal lobe adult (RPKM 21.3) and 13 other tissues See more Orthologs human all Genomic context Location: 4; 4 D2.3 See Trnp1 in Genome Data Viewer Exon count: 3 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 4 NC_000070.6 (133491097..133499645, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 4 NC_000070.5 (133047015..133054465, complement) Chromosome 4 - NC_000070.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 2 transcripts Gene: Trnp1 ENSMUSG00000056596 Description TMF1-regulated nuclear protein 1 [Source:MGI Symbol;Acc:MGI:1916789] Gene Synonyms 2300002D11Rik Location Chromosome 4: 133,491,100-133,498,550 reverse strand. GRCm38:CM000997.2 About this gene This gene has 2 transcripts (splice variants), 108 orthologues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Trnp1-202 ENSMUST00000125541.1 1654 223aa ENSMUSP00000129613.1 Protein coding CCDS38904 Q80ZI1 TSL:1 GENCODE basic APPRIS P1 Trnp1-201 ENSMUST00000123169.1 687 No protein - lncRNA - - TSL:2 27.45 kb Forward strand 133.485Mb 133.490Mb 133.495Mb 133.500Mb 133.505Mb Genes Tent5b-201 >protein coding (Comprehensive set... Contigs AL627228.31 > Genes (Comprehensive set... < Gm13257-201lncRNA < Trnp1-202protein coding < Trnp1-201lncRNA Regulatory Build 133.485Mb 133.490Mb 133.495Mb 133.500Mb 133.505Mb Reverse strand 27.45 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Non-Protein Coding RNA gene Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000125541 < Trnp1-202protein coding Reverse strand 7.45 kb ENSMUSP00000129... MobiDB lite Low complexity (Seg) PANTHER TMF-regulated nuclear protein 1 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 20 40 60 80 100 120 140 160 180 200 223 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • The Hominoid-Specific Gene TBC1D3 Promotes Generation of Basal Neural
    1 The hominoid-specific gene TBC1D3 promotes generation of basal neural 2 progenitors and induces cortical folding in mice 3 4 Xiang-Chun Ju1,3,9, Qiong-Qiong Hou1,3,9, Ai-Li Sheng1, Kong-Yan Wu1, Yang Zhou8, 5 Ying Jin8, Tieqiao Wen7, Zhengang Yang6, Xiaoqun Wang2,5, Zhen-Ge Luo1,2,3,4 6 7 1Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for 8 Biological Sciences, Chinese Academy of Sciences, Shanghai, China. 9 2CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 10 China. 11 3Chinese Academy of Sciences University, Beijing, China. 12 4ShanghaiTech University, Shanghai, China 13 5Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. 14 6Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan 15 University, Shanghai, China. 16 7School of Life Sciences, Shanghai University, Shanghai, China. 17 8The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese 18 Academy of Sciences, Shanghai, China. 19 9Co-first author 20 Correspondence should be addressed to Z.G.L ([email protected]) 21 22 Author contributions 23 X.-C.J and Q.-Q. H performed most experiments, analyzed data and wrote the paper. 24 A.-L.S helped with in situ hybridization. K.-Y.W assisted with imaging analysis. T.W 25 helped with the construction of nestin promoter construct. Y. Z and Y. J helped with 26 ReNeuron cell culture and analysis. Z.Y provided human fetal samples and assisted with 1 27 immunohistochemistry analysis. X.W provided help with live-imaging analysis. Z.-G.L 28 supervised the whole study, designed the research, analyzed data and wrote the paper.
    [Show full text]
  • Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root Ganglia: an RNA-Seq-Based Resource for Pain and Sensory Neuroscience Research
    bioRxiv preprint doi: https://doi.org/10.1101/165431; this version posted October 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Comparative transcriptome profiling of the human and mouse dorsal root ganglia: An RNA-seq-based resource for pain and sensory neuroscience research Short Title: Human and mouse DRG comparative transcriptomics Pradipta Ray 1, 2 #, Andrew Torck 1 , Lilyana Quigley 1, Andi Wangzhou 1, Matthew Neiman 1, Chandranshu Rao 1, Tiffany Lam 1, Ji-Young Kim 1, Tae Hoon Kim 2, Michael Q. Zhang 2, Gregory Dussor 1 and Theodore J. Price 1, # 1 The University of Texas at Dallas, School of Behavioral and Brain Sciences 2 The University of Texas at Dallas, Department of Biological Sciences # Corresponding authors Theodore J Price Pradipta Ray School of Behavioral and Brain Sciences School of Behavioral and Brain Sciences The University of Texas at Dallas The University of Texas at Dallas BSB 14.102G BSB 10.608 800 W Campbell Rd 800 W Campbell Rd Richardson TX 75080 Richardson TX 75080 972-883-4311 972-883-7262 [email protected] [email protected] Number of pages: 27 Number of figures: 9 Number of tables: 8 Supplementary Figures: 4 Supplementary Files: 6 Word count: Abstract = 219; Introduction = 457; Discussion = 1094 Conflict of interest: The authors declare no conflicts of interest Patient anonymity and informed consent: Informed consent for human tissue sources were obtained by Anabios, Inc. (San Diego, CA). Human studies: This work was approved by The University of Texas at Dallas Institutional Review Board (MR 15-237).
    [Show full text]
  • Alternatively Activated NUSAP1 Promotes Tumor Growth and Indicates Poor Prognosis in Hepatocellular Carcinoma
    247 Original Article Alternatively activated NUSAP1 promotes tumor growth and indicates poor prognosis in hepatocellular carcinoma Chao Shi1#, Hui Xu2#, Junyu Liu3, Yuanbin Zhong4, Xinping Zhang2, Xiaoqin Tong2, Lunli Zhang4, Xiaopeng Li4, Libin Deng5,6 1Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; 2Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, China; 3Queen Mary School, Medical College of Nanchang University, Nanchang 330031, China; 4Department of Infectious Diseases & Key Laboratory of Liver Regenerative Medicine of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;5 College of Basic Medical Science, Nanchang University, Nanchang 330031, China; 6Institute of Translational Medicine, Nanchang University, Nanchang 330031, China Contributions: (I) Conception and design: L Deng; (II) Administrative support: L Deng; (III) Provision of study materials or patients: C Shi, H Xu, X Zhang, X Tong; (IV) Collection and assembly of data: C Shi, H Xu, Y Zhong, X Zhang, X Tong, L Zhang, X Li; (V) Data analysis and interpretation: H Xu, J Liu, Y Zhong, X Zhang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Libin Deng, PhD. Institute of Translational Medicine, Nanchang University, Nanchang 330031, China. Email: [email protected]. Background: Hepatocellular carcinoma (HCC) is one of the most common malignancies with high mortality. The key genes involved in initiation and development of HCC is not entirely clear. Methods: We performed a meta-analysis of available transcriptome data from 6 independent HCC datasets [5 datasets from the Gene Expression Omnibus (GEO) and 1 dataset from The Cancer Genome Atlas (TCGA)].
    [Show full text]
  • TRNP1 Sequence, Function and Regulation Co-Evolve with Cortical Folding in Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.05.429919; this version posted February 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. TRNP1 sequence, function and regulation co-evolve with cortical folding in mammals Zane Kliesmete1,§, Lucas E. Wange1,§, Beate Vieth1, Miriam Esgleas2,3, Jessica Radmer1, Matthias H¨ulsmann1,4, Johanna Geuder1, Daniel Richter1, Mari Ohnuki1, Magdalena G¨otz2,3,5, Ines Hellmann1,*,§, Wolfgang Enard1,*,§ 1 Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians Universitaet, Munich, Germany 2 Department of Physiological Genomics, BioMedical Center - BMC, Ludwig-Maximilians Universitaet, Munich, Germany 3 Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany 4 current address: Department of Environmental Microbiology, Eawag, 8600 D¨ubendorf, Switzerland & Department of Environmental Systems Science, ETH Zurich, 8092 Z¨urich, Switzerland 5 SYNERGY, Excellence Cluster of Systems Neurology, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet, Munich, Germany § equal author contribution * correspondence [email protected], [email protected] Abstract Genomes can be seen as notebooks of evolution that contain unique information on successful genetic experiments (Wright 2001). This allows to identify conserved genomic sequences (Zoonomia Consortium 2020) and is very useful e.g. for finding disease-associated variants (Kircher et al. 2014). Additional information from genome comparisons across species can be leveraged when considering phenotypic variance across species. Here, we exemplify this principle in a cross-species association study by testing whether structural or regulatory changes in TRNP1 correlate with changes in brain size and cortical folding in mammals.
    [Show full text]
  • Glucocorticoid Receptor and Klf4 Co-Regulate Anti-Inflammatory Genes in Keratinocytes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Glucocorticoid receptor and Klf4 co-regulate anti-inflammatory genes in keratinocytes Lisa M. Sevilla1, Víctor Latorre1,2, Elena Carceller1, Julia Boix1, Daniel Vodák3, Ian Geoffrey Mills4, 5, 6, and Paloma Pérez1 1 Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV- CSIC), Jaime Roig 11, E-46010 Valencia, Spain. 2 Faculty of Human and Medical Sciences, The University of Manchester, Manchester UK 3 Bioinformatics Core Facility, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Norway 4 Prostate Cancer Research Group, Centre for Molecular Medicine (Norway), University of Oslo and Oslo University Hospitals, Oslo, Norway 5 Department of Cancer Prevention, Oslo University Hospitals, Oslo, Norway. 6 Department of Urology, Oslo University Hospitals, Oslo, Norway. Corresponding autor and person to whom reprint requests should be addressed: Paloma Pérez, PhD Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV- CSIC) Jaime Roig 11, E-46010, Valencia, Spain Phone: +34-96-339-1766 Fax: +34-96-369-0800 e-mail: [email protected] Grants and fellowships supporting the writing of paper: SAF2011-28115 of the Ministerio de Economía y Competitividad from the Spanish government. EC and JB are recipients of FPU and FPI fellowships of the Spanish Ministery, respectively Disclosure Statement: The authors have nothing to disclose. Abstract The glucocorticoid (GC) receptor (GR) and Kruppel-like factor Klf4 are transcription factors that play major roles in the skin homeostasis by regulating the expression of overlapping gene subsets.
    [Show full text]
  • Functionally Enigmatic Genes: a Case Study of the Brain Ignorome
    Functionally Enigmatic Genes: A Case Study of the Brain Ignorome Ashutosh K. Pandey1*,LuLu1, Xusheng Wang1,2, Ramin Homayouni3, Robert W. Williams1 1 UT Center for Integrative and Translational Genomics and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America, 2 St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America, 3 Department of Biological Sciences, Bioinformatics Program, University of Memphis, Memphis, Tennessee, United States of America Abstract What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed—the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum—a genomic bandwagon effect.
    [Show full text]
  • Age, Gender and UV-Exposition Related Effects on Gene Expression in in Vivo Aged Short Term Cultivated Human Dermal Fibroblasts
    RESEARCH ARTICLE Age, gender and UV-exposition related effects on gene expression in in vivo aged short term cultivated human dermal fibroblasts Wolfgang Kaisers1¤*, Petra Boukamp4,5, Hans-JuÈ rgen Stark5, Holger Schwender1,2, Julia Tigges4, Jean Krutmann4,6, Heiner Schaal3 1 Center for Bioinformatics and Biostatistics, BMFZ, Heinrich-Heine-UniversitaÈt DuÈsseldorf, DuÈsseldorf, Germany, 2 Mathematical Institute, Heinrich-Heine-UniversitaÈt DuÈsseldorf, DuÈsseldorf, Germany, 3 Institut fuÈr Virologie, Heinrich-Heine-UniversitaÈt DuÈsseldorf, DuÈsseldorf, Germany, 4 IUF - Leibniz Research Institute for a1111111111 Environmental Medicine, DuÈsseldorf, Germany, 5 German Cancer Research Center (DKFZ), Heidelberg, a1111111111 Germany, 6 Medical Faculty, Heinrich-Heine-UniversitaÈt DuÈsseldorf, DuÈsseldorf, Germany a1111111111 a1111111111 ¤ Current address: Department of Anaesthesiology, Heinrich-Heine-UniversitaÈt DuÈsseldorf, DuÈsseldorf, a1111111111 Germany * [email protected] Abstract OPEN ACCESS Ageing, the progressive functional decline of virtually all tissues, affects numerous living Citation: Kaisers W, Boukamp P, Stark H-J, Schwender H, Tigges J, Krutmann J, et al. (2017) organisms. Main phenotypic alterations of human skin during the ageing process include Age, gender and UV-exposition related effects on reduced skin thickness and elasticity which are related to extracellular matrix proteins. Der- gene expression in in vivo aged short term mal fibroblasts, the main source of extracellular fibrillar proteins, exhibit complex alterations cultivated human dermal fibroblasts. PLoS ONE 12(5): e0175657. https://doi.org/10.1371/journal. during in vivo ageing and any of these are likely to be accompanied or caused by changes in pone.0175657 gene expression. We investigated gene expression of short term cultivated in vivo aged Editor: Johnson Rajasingh, University of Kansas human dermal fibroblasts using RNA-seq.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 is online at: average * The Journal of Immunology published online 20 March 2013 from submission to initial decision 4 weeks from acceptance to publication Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke, Man Liu, Gur Yaari, Ashraf M. Khalil, Mary M. Tomayko, Mark J. Shlomchik, David G. Schatz and Steven H. Kleinstein J Immunol http://www.jimmunol.org/content/early/2013/03/20/jimmun ol.1202547 Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/03/20/jimmunol.120254 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. Published March 20, 2013, doi:10.4049/jimmunol.1202547 The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G.
    [Show full text]
  • (NF1) As a Breast Cancer Driver
    INVESTIGATION Comparative Oncogenomics Implicates the Neurofibromin 1 Gene (NF1) as a Breast Cancer Driver Marsha D. Wallace,*,† Adam D. Pfefferle,‡,§,1 Lishuang Shen,*,1 Adrian J. McNairn,* Ethan G. Cerami,** Barbara L. Fallon,* Vera D. Rinaldi,* Teresa L. Southard,*,†† Charles M. Perou,‡,§,‡‡ and John C. Schimenti*,†,§§,2 *Department of Biomedical Sciences, †Department of Molecular Biology and Genetics, ††Section of Anatomic Pathology, and §§Center for Vertebrate Genomics, Cornell University, Ithaca, New York 14853, ‡Department of Pathology and Laboratory Medicine, §Lineberger Comprehensive Cancer Center, and ‡‡Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514, and **Memorial Sloan-Kettering Cancer Center, New York, New York 10065 ABSTRACT Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.
    [Show full text]
  • Trnp1 Organizes Diverse Nuclear Membrane‐Less Compartments In
    Article Trnp1 organizes diverse nuclear membrane-less compartments in neural stem cells Miriam Esgleas1,2, Sven Falk1,2 , Ignasi Forné3, Marc Thiry4, Sonia Najas1,2, Sirui Zhang5 , Aina Mas-Sanchez1,2, Arie Geerlof6, Dierk Niessing7,8,†, Zefeng Wang5, Axel Imhof3,9 & Magdalena Götz1,2,9,* Abstract and in a screen for factors regulating neural stem cell (NSC) self- renewal (Pinto et al, 2008). Trnp1 is highest expressed in subsets of TMF1-regulated nuclear protein 1 (Trnp1)hasbeenshowntoexert NSCs that self-renew (Stahl et al, 2013) and its overexpression (OE) potent roles in neural development affecting neural stem cell self- maintain NSCs in a self-renewal state (Stahl et al, 2013; Martinez- renewal and brain folding, but its molecular function in the nucleus Martinez et al, 2016). Conversely, Trnp1 knock-down (KD) is still unknown. Here, we show that Trnp1 is a low complexity promotes the differentiation of NSC toward other progenitors, protein with the capacity to phase separate. Trnp1 interacts with thereby generating folds in the normally smooth mouse brain (Stahl factors located in several nuclear membrane-less organelles, the et al, 2013). Besides its highly specific expression in neurogenic nucleolus, nuclear speckles, and condensed chromatin. Importantly, sites in the nervous system (Stahl et al, 2013), Trnp1 is also Trnp1 co-regulates the architecture and function of these nuclear expressed in many other stem and progenitor cells during develop- compartments in vitro and in the developing brain in vivo. Deletion ment (Metzger, 2011), suggesting a common role in promoting of a highly conserved region in the N-terminal intrinsic disordered proliferation across tissues.
    [Show full text]
  • Macaca Mulatta) Infants
    ZOOLOGICAL RESEARCH Blood transcriptome analysis reveals gene expression features of breast-feeding rhesus macaque (Macaca mulatta) infants DEAR EDITOR, expression levels of genes related to such functions or pathways in infants may show significant differences to that During the breast-feeding period, infants undergo remarkable found in adults. changes, including rapid physiological and developmental Although male and female genomes share much of the growth. However, little is known about gene expression same genetic information, previous studies have found sex- features and sex-specific gene expression in breast-feeding specific gene expression in various species and tissues infants. In this study, we sequenced 32 blood transcriptomes (Gershoni & Pietrokovski, 2017; Ronen & Benvenisty, 2014; from 16 breast-feeding rhesus macaque (Macaca mulatta) Tower, 2017; Villa et al., 2018). For example, males and infants and their lactating mothers. We identified 218 females exhibit differences in brain anatomy and development differentially expressed genes (DEGs) between infants and (Collaer & Hines, 1995; Giedd et al., 1997), women mothers, including 91 up-regulated and 127 down-regulated consistently exhibit greater longevity than men (Tower, 2017), DEGs in the infant group. Functional enrichment analysis of and sex differences are pervasive in metabolic and the up-regulated DEGs and unique hub genes in infants cardiovascular traits (Chella Krishnan et al., 2018). showed primary enrichment in immunity, growth, and Rhesus macaques exhibit a close evolutionary relationship development. Protein-protein interaction analysis also to humans and are thus widely used in biomedical studies revealed that genes at key positions in infants were mainly (Rhesus Macaque Genome Sequencing and Analysis related to development and immunity.
    [Show full text]