Division: Chlorophyta – Green Algae Very Important from an Evolutionary

Total Page:16

File Type:pdf, Size:1020Kb

Division: Chlorophyta – Green Algae Very Important from an Evolutionary Division: Chlorophyta – Green Algae Very important from an evolutionary point of view Some formed complex multicellular bodies Moved onto land – later to become “true” plants • Body Construction in the Green Algae – simplest is a motile unicellular organism – from this simple plan several paths were taken – Motile colonies • Cells adhere to one another • All cells are similar 17 Division: Chlorophyta – Green Algae – Nonmotile Colonies • Cells either never develop flagella or flagella is lost • Flagella considered the ancestral trait – Filamentous Body • Cells held together via middle lamella • Cell division transverse; if longitudinal results in filament branching • Parts can be specialized » Holdfast » Gamete production 18 Division: Chlorophyta – Green Algae • Membranous Body – Cell division occurs in only two planes • Forms a thin sheet of cells • Easily torn by wave action • Parenchymatous Body – Cell division occurs in three planes • Cells connected by plasmodesmata • True parenchyma tissue is formed 19 Division: Chlorophyta – Green Algae • Coenocytic or Siphonous Body – Karyokinesis without cytokinesis; results in a giant multinucleate cell 20 Life Cycles of the Green Algae • Asexual Reproduction – ex. Euglenoids – Cell cycle – mitosis and cytokinesis • Sexual Reproduction – Requires meiosis – Requires syngamy – Simplest form • Dipoloid cell undergoes meiosis – Haploid individuals produced that can reproduce via mitosis – Some cells act as gametes and fuse » Produces a diploid cell that can reproduce via mitosis • Very little difference between diploid and haploid individuals • Referred to as being DIBIONTIC (alternation of generations between haploid and diploid) 21 Life Cycles of the Green Algae – Monobiontic Species - Only one free-living generation • Example #1 – Haploid phase only represented by the individual » Can be either uni or multicellular » Carries out photosynthesis and growth – Only diploid cell is the zygote 22 Life Cycles of the Green Algae • Example #2 – Diploid phase represents the individual - undergoes vegetative growth – Haploid cells are gametes which undergo syngamy 23 Life Cycles of the Green Algae • Isomorphic vs Heteromorphic Generations 24 Life Cycles of the Green Algae • Gamete Development – Early on gametes were identical, isogamous – Later anisogamy developed (slight difference) – Ultimately oogamy evolved 25 Representative Genera of the Green Algae • Unicellular Species – ex. Chlamydomonas – Chlorophylls a and b, carotenoids, xanthophylls – Starch produced in chloroplasts – Two anterior flagella (common to most motile green algae) – Reproduces via mitosis, meiosis + syngamy • Haploid resorbs flagella • Divides mitotically producing either 2, 4, 8, or 16 cells • Each new cell grows a two flagella • These cells swim and eventually meet another cell – Plasmogamy and karyogamy produce a single large zygote (only diploid cell) – Becomes dormant – Germinates via meiosis, producing four haploid individuals 26 Representative Genera of the Green Algae • Motile Colonial Species – cell closely resemble Chlamydomonas – after zygote divides individuals are held together by a gelatinous mass 27 Representative Genera of the Green Algae – Based upon advances • Gonium – Colonies small (4 – 32 cells) – Simple organization, flagella beat in synchrony 28 Representative Genera of the Green Algae • Pandorina – Similar in size to Gonium – Some differentiation, anterior cells slightly different than posterior cells, causes colony to swim in one direction 29 Representative Genera of the Green Algae • Volvox – up to 50,000 cells (can see colony without a microscope) – Group of anterior cells, about 50, modified for reproduction 30 Representative Genera of the Green Algae • Filamentous Species – Ulothrix • Monobiontic • A single row of cells, with terminal cell modified to a holdfast • Zoospores can be produced mitotically – Possess four flagella – Settle to bottom – Germinate into new filaments • Some cells produce gametes – isogamous – Two flagella, resemble Chlamydomonas – Fuse producing a zygote which germinates via meiosis producing haploid zoospores – Settle to the bottom and germinate into a filament 31 Representative Genera of the Green Algae – Syrogyra • Very common if freshwater environments • Chloroplast spirally arranged • No swimming gametes; rather a conjugation tube • Each filament is haploid (+ or -) • Zygote becomes dormant and thick walled • Germinates into a new filament from haploid spores 32 Representative Genera of the Green Algae • Laminar Species – Ulva • Similar to Ulothrix • Cell germinate in two planes • Dibiontic life cycle (alternation of isomorphic generations) • Separate individuals producing different gametes, dioecy 33 Representative Genera of the Green Algae • Coenocytic Species – Dibiontic life cycle – Heteromorphic generations (initially caused real problems) 34 Representative Genera of the Green Algae • Parcnchmatous Species – some types divide via a phragmoplast (plants do this) possibly ancestral – Chara – has multicellular gametangia (plant or not) 35 Division Phaeophyta: Brown Algae • Major Characteristics – Mostly marine, in littoral zone (between high and low tides) – Very complex anatomically and morphologically – Similar to plants but very different • Possess chlorophylls a and c, fucoxanthin, violaxanthin, diatoxanthin and carotenes (implications?) • Storage product is laminarin (glucose polymer), mannitol and fat (no starch) • Have a holdfast, stipe (stalk) and a blade 36 Division Phaeophyta: Brown Algae • Cell walls contain cellulose and alginic acid (used in paint an food industry) • Can be very large, and have developed specialized regions – Holdfast, anchoring – Epidermis to prevent damage from waves – With an epidermis diffusion is impaired, need a conducting system » Have trumpet cells that resemble phloem (convergence) 37 Division Phaeophyta Brown Algae – Ectocarpus • Isomorphic generations • Diploid sporophytes possess unilocular sporangia at the ends of small terminal branches – First nuclear division is via meiosis (haploid) – Zoospores germinate into gametophyte » Ends of branches are gametangia » Plurilocular gametangia » Gametes anisogamous » Settle to the bottom secrete ectocarpene, attracts opposite, syngamy ensues 38 Division Phaeophyta Brown Algae – Fucus • Common on rocks of intertidal zone • Diploid individuals seen at low tide • Dichotomously branched blades • Ends of branches posses receptacles that contain concepticles 39 40 Division Rhodophyta: Red Algae • Major Characteristics – Large group – 3,900 sp. – Very different from other algae and true plants • Like cyanobacteria have phycobilin (accessory pigment) • Typically red (phycoerythrin) can be purple, brown or black (phycocyanin), chlorophyll a and carotenoids • Storage product floridean starch, similar to glycogen • Different sugars formed • Cell wall contains cellulose and sulfated galactans (slimy mucilages) – used to produce agar • No plasmodesmata • Mostly multicellular • Life cycles poorly known – Unique, lack any motile cells – Lack centrioles but have polar rings for this function – Polysiphonia – three phases to its life history » Haploid gametophyte » Diploid carposporophyte » Diploid tetrasporophyte 41 42.
Recommended publications
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Phylogenetic Analysis and Substitution Rate Estimation of Colonial Volvocine Algae Based on Mitochondrial Genomes
    G C A T T A C G G C A T genes Article Phylogenetic Analysis and Substitution Rate Estimation of Colonial Volvocine Algae Based on Mitochondrial Genomes Yuxin Hu 1,2, Weiyue Xing 1,2, Zhengyu Hu 3 and Guoxiang Liu 1,* 1 Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] (Y.H.); [email protected] (W.X.) 2 School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] * Correspondence: [email protected]; Tel.: +86-027-6878-0576 Received: 11 December 2019; Accepted: 15 January 2020; Published: 20 January 2020 Abstract: We sequenced the mitochondrial genome of six colonial volvocine algae, namely: Pandorina morum, Pandorina colemaniae, Volvulina compacta, Colemanosphaera angeleri, Colemanosphaera charkowiensi, and Yamagishiella unicocca. Previous studies have typically reconstructed the phylogenetic relationship between colonial volvocine algae based on chloroplast or nuclear genes. Here, we explore the validity of phylogenetic analysis based on mitochondrial protein-coding genes. Wefound phylogenetic incongruence of the genera Yamagishiella and Colemanosphaera. In Yamagishiella, the stochastic error and linkage group formed by the mitochondrial protein-coding genes prevent phylogenetic analyses from reflecting the true relationship. In Colemanosphaera, a different reconstruction approach revealed a different phylogenetic relationship. This incongruence may be because of the influence of biological factors, such as incomplete lineage sorting or horizontal gene transfer. We also analyzed the substitution rates in the mitochondrial and chloroplast genomes between colonial volvocine algae.
    [Show full text]
  • Phylogenetic Analysis of ''Volvocacae'
    Phylogenetic analysis of ‘‘Volvocacae’’ for comparative genetic studies Annette W. Coleman† Division of Biology and Medicine, Brown University, Providence, RI 02912 Edited by Elisabeth Gantt, University of Maryland, College Park, MD, and approved September 28, 1999 (received for review June 30, 1999) Sequence analysis based on multiple isolates representing essen- most of those obtained previously with data for other DNA tially all genera and species of the classic family Volvocaeae has regions in identifying major clades and their relationships. clarified their phylogenetic relationships. Cloned internal tran- However, the expanded taxonomic coverage revealed additional scribed spacer sequences (ITS-1 and ITS-2, flanking the 5.8S gene of and unexpected relationships. the nuclear ribosomal gene cistrons) were aligned, guided by ITS transcript secondary structural features, and subjected to parsi- Materials and Methods mony and neighbor joining distance analysis. Results confirm the The algal isolates that form the basis of this study are listed below notion of a single common ancestor, and Chlamydomonas rein- and Volvocacean taxonomy is summarized in Table 1. The taxon harditii alone among all sequenced green unicells is most similar. names are those found in the culture collection listings. Included Interbreeding isolates were nearest neighbors on the evolutionary is the Culture Collection designation [University of Texas, tree in all cases. Some taxa, at whatever level, prove to be clades National Institute for Environmental Studies (Japan), A.W.C. or by sequence comparisons, but others provide striking exceptions. R. C. Starr collection], an abbreviated name, and the GenBank The morphological species Pandorina morum, known to be wide- accession number.
    [Show full text]
  • {Download PDF} Freshwater Life
    FRESHWATER LIFE PDF, EPUB, EBOOK Malcolm Greenhalgh,Denys Ovenden | 256 pages | 30 Mar 2007 | HarperCollins Publishers | 9780007177776 | English | London, United Kingdom Freshwater Life PDF Book Classes of organisms found in marine ecosystems include brown algae , dinoflagellates , corals , cephalopods , echinoderms , and sharks. Gastrotrichs phylum: Gastrotricha are small and flat worms very hairy whose body ends with two quite large appendixes. In fact, many of them are equipped with one or two or even more flagella. But this was no typical love story. Figure 9 - Pediastrum sp. Once it leaves the freshwater, it does not eat, and so after it spawns its energy reserves are used up and it dies. You can see that life on Earth survives on what is essentially only a "drop in the bucket" of Earth's total water supply! Anisonema Figure 7 is an alga lacking in chloroplasts which feeds on organic detritus. Figure 13 - Spirogyrae in conjugation. Download as PDF Printable version. The simple study of animal behaviour whilst sitting on the edge of a pond is also useful. Adult freshwater snails are capable of exploits which are difficult to imagine. They are also known as Cyanophyceae because of their blue- green colour. Wetlands can be part of the lentic system, as they form naturally along most lake shores, the width of the wetland and littoral zone being dependent upon the slope of the shoreline and the amount of natural change in water levels, within and among years. Survey Manual. This region is called the thermocline. Cite this article Pick a style below, and copy the text for your bibliography.
    [Show full text]
  • Identification of Freshwater Invertebrates
    Identification of Freshwater Invertebrates © 2008 Pennsylvania Sea Grant To request copies, please contact: Sara Grisé email: [email protected] Table of Contents A. Benthic Macroinvertebrates……………………….………………...........…………1 Arachnida………………………………..………………….............….…2 Bivalvia……………………...…………………….………….........…..…3 Clitellata……………………..………………….………………........…...5 Gastropoda………………………………………………………..............6 Hydrozoa………………………………………………….…………....…8 Insecta……………………..…………………….…………......…..……..9 Malacostraca………………………………………………....…….…....22 Turbellaria…………………………………………….….…..........…… 24 B. Plankton…………………………………………...……….………………............25 Phytoplankton Bacillariophyta……………………..……………………...……….........26 Chlorophyta………………………………………….....…………..........28 Cyanobacteria…...……………………………………………..…….…..32 Gamophyta…………………………………….…………...….…..…….35 Pyrrophycophyta………………………………………………………...36 Zooplankton Arthropoda……………………………………………………………....37 Ciliophora……………………………………………………………......41 Rotifera………………………………………………………………......43 References………………………………………………………….……………….....46 Taxonomy is the science of classifying and naming organisms according to their characteris- tics. All living organisms are classified into seven levels: Kingdom, Phylum, Class, Order, Family, Genus, and Species. This book classifies Benthic Macroinvertebrates by using their Class, Family, Genus, and Species. The Classes are the categories at the top of the page in colored text corresponding to the color of the page. The Family is listed below the common name, and the Genus and Spe- cies names
    [Show full text]
  • Studies on the Influence of Microcystis Aeruginosa on the Ecology and Fish Production of Carp Culture Ponds
    African Journal of Biotechnology Vol. 8 (9), pp. 1911-1918, 4 May, 2009 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2009 Academic Journals Full Length Research Paper Studies on the influence of Microcystis aeruginosa on the ecology and fish production of carp culture ponds P. Padmavathi* and K. Veeraiah Department of Zoology, Acharya Nagarjuna University, Nagarjuna Nagar - 522 510, A.P., India. Accepted 26 December, 2008 In many fish ponds, blue-green algae (Cyanobacteria) constitute the greater part of the phytoplankton. Of the blue-green algae common in fish ponds, Microcystis aeruginosa is said to be a noxious species. It sometimes forms spectacular water blooms, often with harmful consequences such as depletion of oxygen, poor growth of fish and even mass mortality among the fish. The present study was aimed at investigating the influence of different levels of M. aeruginosa on the water quality and fish production of carp culture ponds. For the present study, three carp culture ponds with high, moderate and low levels of M. aeruginosa were selected. In the three ponds, physico-chemical parameters of water, phyto- and zooplankton and fish production were studied. The results indicated that the fish yield was low with concomitant fish mortalities in the pond with high levels of M. aeruginosa compared to the other two ponds. The influence of the different levels of M. aeruginosa on other planktonic groups and in turn their effect on fish production were analyzed and discussed in the light of the existing literature. Key words: Cyanobacteria, algal blooms, Microcystis, phytoplankton, zooplankton, fish production, carp culture ponds.
    [Show full text]
  • By Matthew George Heffel B.S., Kansas State University, 2019 A
    Pandorina morum genome assembly, annotation, and analysis by Matthew George Heffel B.S., Kansas State University, 2019 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Biology College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2020 Approved by: Major Professor Bradly J. S. C. Olson Copyright © Matthew G. Heffel 2020. Abstract The evolution of multicellularity is a major evolutionary transition that leads to increased organismal complexity and has occurred various times in multiple domains of life. Despite its common occurrence, the evolution of multicellularity is not yet well understood largely due to genetic signatures being lost due to deep divergence between unicellular and multicellular lineages. The volvocine algae have recently made the transition to multicellularity (200 MYA) and cover a large range of morphologies, including unicellular Chlamydomonas, undifferentiated multicellular Gonium (8-16 cells), multicellular isogamous Pandorina (8-16 cells), multicellular isogamous Yamagishiella (32 cells), multicellular anisogamous Eudorina (32 cells), and multicellular differentiated Volvox with germ-soma division of labor (>500 cells). Using modern sequencing techniques, here, the genome of Pandorina morum is sequenced, assembled, and annotated. Brief comparative genomics work shows gene orthology to related volvocine species as well as a common trend of progressive gene loss occurring at a higher rate than gene gain and organismal complexity increases.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • New and Rare Species of Volvocaceae (Chlorophyta) in the Polish Phycoflora
    Acta Societatis Botanicorum Poloniae Journal homepage: pbsociety.org.pl/journals/index.php/asbp ORIGINAL RESEARCH PAPER Received: 2013.06.25 Accepted: 2013.12.15 Published electronically: 2013.12.20 Acta Soc Bot Pol 82(4):259–266 DOI: 10.5586/asbp.2013.038 New and rare species of Volvocaceae (Chlorophyta) in the Polish phycoflora Ewa Anna Dembowska* Department of Hydrobiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland Abstract Seven species of Volvocaceae were recorded in the lower Vistula River and its oxbow lakes, including Pleodorina californica for the first time in Poland. Three species – Eudorina cylindrica, E. illinoisensis and E. unicocca – were found in the Polish Vistula River in the 1960s and 1970s, as well as at present. They are rare species in the Polish aquatic ecosystems. Three species are com- mon both in the oxbow lakes and in the Vistula River: Eudorina elegans, Pandorina morum and Volvox aureus. New and rare Volvocaceae species were described in terms of morphology and ecology; also photographic documentation (light microscope microphotographs) was completed. Keywords: Pleodorina, Pandorina, Eudorina, biodiversity, phytoplankton, oxbow lake, lower Vistula Introduction Green algae from the family of Volvocaceae are frequently encountered in eutrophic waters. All species from this family The family of Volvocaceae (Chlorophyta, Volvocales) com- live in fresh waters: lakes, ponds, rivers, and even puddles. prises 7 genera: Eudorina, Pandorina, Platydorina, Pleodorina, Coleman [1] reports that out of ca. 200 colonial Volvocaceae Volvox, Volvulina and Yamagishiella [1]. The genera Astre- in culture collections, ~1/3 came from puddles, ~1/3 – from phomene and Gonium were excluded from Volvocaceae and they lakes and rice fields, and ~1/3 – from zygotes in soil samples form new families: Goniaceae – based on the ultrastructure of from watersides.
    [Show full text]
  • Produced by Fresh-Water Algae Digital Object Identifier
    University of Kentucky UKnowledge KWRRI Research Reports Kentucky Water Resources Research Institute 11-1973 A Study of Water-Soluble Inhibitory Compounds (Algicides) Produced by Fresh-Water Algae Digital Object Identifier: https://doi.org/10.13023/kwrri.rr.69 Denny O. Harris University of Kentucky Manhar C. Parekh University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/kwrri_reports Part of the Algae Commons, Fresh Water Studies Commons, and the Terrestrial and Aquatic Ecology Commons Repository Citation Harris, Denny O. and Parekh, Manhar C., "A Study of Water-Soluble Inhibitory Compounds (Algicides) Produced by Fresh-Water Algae" (1973). KWRRI Research Reports. 126. https://uknowledge.uky.edu/kwrri_reports/126 This Report is brought to you for free and open access by the Kentucky Water Resources Research Institute at UKnowledge. It has been accepted for inclusion in KWRRI Research Reports by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Research Report No. 69 A STUDY OF WATER-SOLUBLE INHIBITORY COMPOUNDS (ALGICIDES) PRODUCED BY FRESH-WATER ALGAE Dr. Denny 0. Harris Principal Investigator Graduate Student Assistant: Manhar C. Parekh Project Number A-018-KY Agreement Numbers: 14-0l-0001-1085, 14-01-0001-1636 14-31-0001-3017, 14-31-0001-3217 Period of Project: May 1968 - June 1971 University of Kentucky Water Resources Research Institute Lexington, Kentucky The work on which this report is based was supported in part by funds provided by the Office of Water Resources Research, United States Department of the Interior, as authorized under the Water Resources Research Act of 1964.
    [Show full text]
  • Factors Affecting Phytoplankton Biodiversity and Toxin Production Tracey Magrann Loma Linda University
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 6-1-2011 Factors Affecting Phytoplankton Biodiversity and Toxin Production Tracey Magrann Loma Linda University Follow this and additional works at: http://scholarsrepository.llu.edu/etd Part of the Biology Commons Recommended Citation Magrann, Tracey, "Factors Affecting Phytoplankton Biodiversity and Toxin Production" (2011). Loma Linda University Electronic Theses, Dissertations & Projects. 45. http://scholarsrepository.llu.edu/etd/45 This Dissertation is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. LOMA LINDA UNIVERSITY School of Science and Technology in conjunction with the Faculty of Graduate Studies ____________________ Factors Affecting Phytoplankton Biodiversity and Toxin Production by Tracey Magrann ____________________ A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biology ____________________ June 2011 © 2011 Tracey Magrann All Rights Reserved Each person whose signature appears below certifies that this dissertation in his opinion is adequate, in scope and quality, as a dissertation for the degree Doctor of Philosophy. , Chairperson Stephen G. Dunbar, Associate Professor of Biology Danilo S. Boskovic, Assistant Professor of Biochemistry, School of Medicine H. Paul Buchheim, Professor of Geology William K. Hayes, Professor of Biology Kevin E. Nick, Associate Professor of Geology iii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to Dr.
    [Show full text]
  • Green Algae and the Origins of Multicellularity in the Plant Kingdom
    Downloaded from http://cshperspectives.cshlp.org/ on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Green Algae and the Origins of Multicellularity in the Plant Kingdom James G. Umen Donald Danforth Plant Science Center, St. Louis, Missouri 63132 Correspondence: [email protected] The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental com- plexity. The study of volvocine algae has provided unprecedented insights into the innova- tions required to achieve multicellularity. he transition from unicellular to multicellu- and rotifers that are limited by prey size (Bell Tlar organization is considered one of the ma- 1985; Boraas et al. 1998). Reciprocally, increased jor innovations in eukaryotic evolution (Szath- size might also entail advantages in capturing ma´ry and Maynard-Smith 1995). Multicellular more or larger prey. organization can be advantageous for several There is some debate about how easy or reasons. Foremost among these is the potential difficult it has been for unicellular organisms for cell-type specialization that enables more to evolve multicellularity (Grosberg and Strath- efficient use of scarce resources and can open mann 2007).
    [Show full text]