<<

Nuclear Magnetic Resonance (NMR) Spectroscopy

Felix Bloch & Edward Purcell Richard Ernst Kurt Wuthrich Physics-1952 -1991 Chemistry-2002

Paul Lauterbur & Peter Mansfield Brian Sykes Lewis Kay Medicine-2003 Principles of NMR Protein Spectroscopy

What does NMR tell us ? 1) Primary structure characterization 2) Dynamics - psec-sec timescales 3) Equilibrium binding 4) Folding/Unfolding 5) Three dimensional structure Some Advantages 1) Solution based 2) Non-destructive 3) Residue specific information Principles of NMR Protein Spectroscopy

Wavelength (nm) X-rays Radio waves

10 100 1000 104 105 106 107 108 109 Crystallography IR NMR UV/Vis

Electron Nuclear spin transitions transitions Principles of NMR Protein Spectroscopy

Nucleus I # Protons # Neutrons 1H 1/2 1 0 12C 0 6 6 13C 1/2 6 7 14N 1 7 7 15N 1/2 7 8 Absorption of energy by nucleus - depends on nuclear spin (I) = sum of unpaired protons + neutrons (spin 1/2) I≠0 - NMR observed - spin will have magnetic moment µ=γI For proteins 1H, 13C, 15N (31P) Principles of NMR Protein Spectroscopy

N N S

Bo

S N m = -1/2 mI = +1/2 I α β S

m=(-I, -I+1 ….I-1, I) Principles of NMR Protein Spectroscopy

Normal Magnetic Field (Bo) z

µ=-γIz

x y Bo Principles of Protein NMR Spectroscopy

So how does this give us an “NMR signal” ?

N N S β

S N m = +1/2 m = -1/2 I I α S α β Principles of Protein NMR Spectroscopy

This occurs for all 1H, 13C, 15N in magnetic field

β γ (∗107 rad / T sec) 1H 26.75 13C 6.73 α 15N -2.72

B0 Principles of Protein NMR Spectroscopy

β

ΔE = γhB0 = hν ν = γB0 (Hz) ω = γB0 (rad) 2π α

Nucleus γ (∗107 rad / T sec) ν at 14.09 T 1H 26.75 600.00 13C 6.73 150.87 15N -2.71 60.82 Principles of Protein NMR Spectroscopy

NMR is an insensitive method 1H N=106 11.75T 18.79T β 499,980 499,968

α 500,020 500,032 Principles of Protein NMR Spectroscopy

Sensitivity

nα-nβ = Δn = NγhBo 2kT 2 Mo=nαµzα + nβµzβ = Δnµzα= 1 γhΔn = 1 N (γh) Bo 2 4kT z z

x x y y Bo Bo Principles of Protein NMR Spectroscopy

Net Magnetization

z z

Mo

x x y y ωo Bo Bo

Rotating Frame Principles of Protein NMR Spectroscopy

How is the NMR Signal Obtained ? -employ a rf pulse at ν of desired nucleus

z z θ Mo

x “rf pulse” x Bo y y B1 B1 Principles of Protein NMR Spectroscopy

z z

Mo π/2 = /2 x θ π x Bo y y B1 B1

pw = 6 µsec γB1 = 41 kHz rf on off Principles of Protein NMR Spectroscopy

z z z Mo π/2

x x x Bo y y receiver y B1 B1 B1 rf FT on off time ν Principles of Protein NMR Spectroscopy

z -t/T Mz(t) = Mo(1-e 1) z x T1 y B1 x z y receiver B1 T2

x y -t/T off B1 My(t) = My(0)*e 2 time Principles of Protein NMR Spectroscopy

T1, T2 (sec) Linewidths 100 T1 10

1

0.1 T 0.01 2

0.001 0.5 Hz 10 Hz 100 10 1 0.1 0.01 0.001

Correlation Time, τc (nsec) MW 100 MW 20,000 Molecular Weight Principles of Protein NMR Spectroscopy

NMR Instrumentation

Magnet - Bo 18.79 T

vacuum

N2(l)

He(l)

magnet

22.31 T (2006) probe Principles of Protein NMR Spectroscopy

Magnet Technology Principles of Protein NMR Spectroscopy

Magnet Technology Principles of Protein NMR Spectroscopy

Probe Technology

B1 Bo Principles of Protein NMR Spectroscopy

Cold “Cryogenic” Probe

1/2 S/N ~ 1/{Rs*(Ts+Tpa)+(Rc*(Tc +Tpa)}

Tpa, Tc - lowered 298˚K 20˚K

Rs, Ts - near 298˚K 3-4 time more sensitive 500 MHz + cold probe = 1.6x S/N 800 MHz Principles of Protein NMR Spectroscopy

Block Diagram of NMR Spectrometer

Probe

obs, dec, lk obs, lk Duplexer

Transmitter Preamplifier

obs, lk CPU Receiver

Computer