Ethiopian Mangoes, the Resourceful Raw Material for the Mango Seed Kernel Oil Production

Total Page:16

File Type:pdf, Size:1020Kb

Ethiopian Mangoes, the Resourceful Raw Material for the Mango Seed Kernel Oil Production ETHIOPIAN MANGOES, THE RESOURCEFUL RAW MATERIAL FOR THE MANGO SEED KERNEL OIL PRODUCTION Mustefa Kemal1, Anuradha Jabasingh S1,*, Abubeker Yimam1 1Process Engineering Division, School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Ethiopia ∗Corresponding author‘s E-mail: [email protected] ABSTRACT Drug Administration (FDA) defines cosmetics as intended to be applied to the human body for Oil extracted from the mango seed kernel, one of cleansing, beautifying, promoting attractiveness, the byproducts of juice processing industry, have or altering the appearance without affecting the application in the cosmetics industry, due to its body's structure or functions [2]. The total value antioxidant, skin whitening and anti-wrinkle of the cosmetics market in Ethiopia reached properties. The main aim of this research is to $25milion up to June 2012, according to figures determine the optimum operating condition for from the country‘s Ministry of Trade and the extraction of oil from the mango seed kernel. Industry, with the average growth rate over the A general factorial design was applied to last three years at 10%. Imported products investigate the effect of process variables on the account for around 90% of the market, with the oil yield. The optimum operating conditions for remaining 10% sourced from domestic the extraction were a particle size range of 0.25- manufacturers. Mango seed kernel oil has been 0.5 mm and extraction time of 6 h. At these used as an ingredient in soaps, shampoos and conditions, the maximum oil yield with hexane as lotions as it is a good source of phenolic solvent was 84.81% and the minimum yield was compounds [3]. Presence of high unsaponifiable 57.41%. The maximum and minimum yield for matter guarantees the use of mango kernel oil in the same operating conditions, when petroleum cosmetics industry [4]. It also has a protective ether was used as solvent was found 83.33% and effect against the harmful UV radiations [5]. 61.48%, respectively, while ethanol as solvent results a maximum yield of 57.04% and minimum The high content of stearic acid allows its yield of 23.70%. The physicochemical properties application as a preservative. Hence, it has wide of the mango oil were determined and the results applications, especially in the stearin guarantee the use of mango kernel oil for manufacturing, confectionery and soap industry cosmetic application. [6]. To start with the study, the world‘s top ten mango producers with their main varieties were Keywords: Extraction, Hexane, Mango seed identified and provided in Table.1. In the context kernel, Oil, Petroleum Ether, Yield. of Ethiopia, mango is produced in the southern and western parts of the country. The total INTRODUCTION production of mango in Ethiopia is 72,187 tons Natural oils are used in a wide variety of in 2013/14 [8]. This accounts for 7219 tons of cosmetic products including personal care as mango seed kernel, annually. The production of well as makeover products. They consist of mango at Arba Minch and Zuria Woreda is ethereal salts of glycerin with a large number of 126,800 qt with total area coverage of 634 organic acids such as citric acid, oleic acid, and hectares. Mango farmsteads in Asossa produce palmitic acid. They are excellent emollients and an average of 13,500 mangoes per farmstead [9]. are derived from a variety of plants [1]. Food and Journal of EEA, Vol. 36, July, 2018 1 Mustefa Kemal et al., Table 1. World‘s top ten mango producers, 2015 [7] The Ethiopian government has a plan to expand mango production by distributing high yielding No. Country Variety Production varieties for small scale farmers, especially, in (tons/year) the Southern region and Oromia region, by 1 India Alphonso, 16,337,400 grafting mangos of known and high yielding Badami, varieties. In Ethiopia, there are many large and Chaunsa, small scale mango juices processing industry Dasheri, Kesar, [10]. During mango processing, peel and kernel Jauhari, Lucknowi, constitute about 17-22% of the fruit. The Fazli, Totapuri, production of oil from the mango seed kernel Banganapalli, could be an efficient method of utilizing the Sindhuri, waste seed kernels. The operating conditions, Kalmi, Neelam, including the particle size, extraction time, and Langra solvent type, solid to solvent ratio, temperature 2 China Zillate, 4,351,593 and moisture content were proved to have an Mallika, Deshehari,Edw effect on the oil yield. This research aims to find ard, Saigon, optimum operating conditions to maximize the R2E2, Spooner, oil yield for the production of oil from the mango Bambaroo seed kernel. 3 Thailand Brahm Kai 2,550,600 Meu MATERIALS AND METHODS 4 Pakistan Anwar Ratol, 1784,300 Langra , Sindhri, Materials Chaunsa, Fajri, Asossa mango varieties were purchased from Samar Bahist, Kenuma and Akea juice processing house, Addis Dasehri, Saroli Ababa. Hexane, Petroleum ether, Ethanol, 5 Mexico Ataulfo, Haden, 1,632,650 Sodium hydroxide, potassium hydroxide, Tommy Atkins, hydrochloric acid, Folin Ciocalteu reagent, Kent, Keitt Gallic acid, Sodium carbonate, acetone, and 6 Indonesia Arumanis, 1,313,540 phenolphthalein were procured from Merck, Gedong 7 Brazil Espada, Rosa, 1,188,910 Germany. Bourbon, Uba 8 Bangladesh Gopalbhog, 1,047,850 Deseeding and processing Himsagar, The mangoes were peeled and deseeded. The Khirsapat, seeds were sun dried for five days. The hard Langra, Fasli, cover of the seed was decorticated manually to Ashwina, obtain the seed kernel. The seed kernel was dried Amropali 9 Philippine Champagne 823,576 in the oven at 50°C for 18 h. The dried mango mangoes seed kernel was milled in centrifugal miller with 10 Nigeria Kerosene, 790,200 a sieve size of 4 mm. Then the sample was Sherri sieved using a vibrating shaker for 15 min. Journal of EEA, Vol. 36, July, 2018 2 Ethiopian Mangoes, the Resourceful Raw Material … Moisture content of the kernel value, peroxide value and total phenolic content Seven samples of the kernel were randomly were determined. weighed and dried in an oven at 105°C and the weight was measured every 2 h. The procedure Moisture and volatile matter of oil was repeated until a constant weight was 5 g of oil was weighed and dried in an oven at obtained. The percentage moisture content of the 105 °C for 1 h. The dish was removed from the kernel was calculated using the following oven, cooled in a dissector and weighed. The formula. process was repeated until a constant weight was observed. The moisture and volatile matter was ( ) ( ) calculated using the following formula. w1 and w2 are the weight of the sample before ( ) drying and after drying respectively. Where w1 and w, are the reduction in the weight Mango oil extraction of the dried sample and the initial weight of the The experimental work was conducted using sample in g. soxhlet extractor in triplicate with three different solvents: hexane, petroleum ether and ethanol. 75 Specific gravity g mango seed kernel at three different particle The density of oil was determined using a sizes (3-1.5mm, 1.5-0.5mm and 0.5-0.25mm) specific gravity bottle. A clean and dry density were extracted using Soxhlet extracter with 300 bottle of 25 mL capacity at 30°C was weighed, mL solvents with varying treatment times (2 h, 4 filled with water and extracted oil, separately and h and 6 h). weighed again. The specific gravity was calculated using the following formula. The resulting extracts, were purified by simple distillation. The obtained fractions were weighed ( ) and physicochemical properties determined. ( ) ( ) Mango seed kernel had an oil content of 12%. Hence this was used for the calculation of yield. Where A, B and C are the weights of the specific The percentage yield was calculated as follows gravity bottle with oil, empty specific gravity bottle and empty specific gravity bottle with ( ) ( ) water at 30°C. ( ) Kinematic viscosity ( ) Kinematic viscosity of the oil was measured ( ) ( ) using Vibro viscometer. 35 mL oil sample was heated to 30°C and fed to the sample holder. The sensor of the viscometer was immersed into the Physical and chemical characterization oil, which measures the dynamic viscosity of oil. Physical properties including the moisture The kinematic viscosity is calculated using content, volatile matter, specific gravity, ( ) viscosity, pH value, refractive index and chemical properties including the saponification Where, μ and ρ are the dynamic viscosity and value, un saponifiable matter, iodine value, acid density of oil respectively. Journal of EEA, Vol. 36, July, 2018 3 Mustefa Kemal et al., Determination of pH was transferred into another separating funnel 2 g of the oil sample was added to 25 mL beaker and the extraction was repeated three times using and 13 mL of hot distilled water was added to the 50 mL portion of petroleum ether. To insure the sample in the beaker and stirred slowly. It was ether extract was free of alkali, the combined cooled in a cold water bath to 25°C. The pH ether extract was washed three times with 50 mL electrode was standardized with a buffer solution aqueous alcohol followed by 25 mL distilled and immersed into the sample [11]. water. The ether solution was transferred to 250 Ml beaker and the ether was evaporated. When Saponification value all the ether is evaporated, 3 mL of acetone was 2 g of sample was added to 250 mL flask. 25 mL added, followed by drying at 100°C for 30 min of alcoholic potassium hydroxide solution was [12]. The residue was dissolved in 50 mL of added and the flask was connected to reflux warm ethanol and titrated with 0.02 N sodium condenser, kept on the water bath and boiled hydroxide.
Recommended publications
  • Antibacterial Activity of Leaf Extracts of Spondias Mangifera Wild: a Future Alternative of Antibiotics
    Microbiological Communication Biosci. Biotech. Res. Comm. 12(3): 665-668 (2019) Antibacterial activity of leaf extracts of Spondias mangifera Wild: A future alternative of antibiotics Pooja Jaiswal1, Alpana Yadav1, Gopal Nath2 and Nishi Kumari1* 1Department of Botany, MMV, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India 2Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India ABSTRACT Antibacterial effi cacy of both dry and green leaf extracts of Spondias mangifera was observed by using their methanol, ethanol, and aqueous extracts. Six human pathogenic bacterial strains were selected as test organisms and antibacterial activities were assessed by using disc diffusion method. Maximum inhibition of Enterococcus faecalis was observed by ethanolic dry leaf extract (25.00 ± 0.58). Similarly, methanolic dry leaf extract was very effective against Shigella boydii (25.17±0.44). Higher antibacterial activity was observed by green leaf extracts for other test organisms. Aqueous extract of green leaf showed maximum inhibition (11.50± 0.76) against Staphylococcus aureus. Ethanolic extract of green leaf showed maximum activity (10.17±0.44) against Escherichia coli. Similarly, methanolic extract of green leaf against Klebsiella pneumoniae and Proteus vulgaris showed maximum antibacterial activities, i.e. (15.50±0.29) and (12.50±0.29) respectively. KEY WORDS: ANTIBACTERIAL, BACTERIA, EXTRACT, INHIBITION, SOLVENT INTRODUCTION metabolites such as alkaloids, tannins, fl avonoids, terpe- noids, etc. contribute signifi cant role in developing anti- Since ancient times, we depend on plants or plant microbial properties. After the discovery of antibiotics, products for medicines. Plants serve as source of many our dependence on antibiotics had minimized the use of chemicals and many of them have been identifi ed as such plants.
    [Show full text]
  • Influence of Some Fruit Traits of Mango, Mangifera Indica L. Varieties Against Maggot Development and Infestation of Mango Fruit
    Journal of Entomology and Zoology Studies 2018; 6(2): 2621-2627 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Influence of some fruit traits of mango, Mangifera JEZS 2018; 6(2): 2621-2627 © 2018 JEZS indica L. varieties against maggot development Received: 07-01-2018 Accepted: 10-02-2018 and infestation of mango fruit fly, Bactrocera JS Choudhary dorsalis (Hendel) ICAR Research Complex for Eastern Region Research Centre, Plandu, Ranchi, Jharkhand, India JS Choudhary, MK Dhakar, Debu Mukherjee, Moanaro, Bikash Das, AK Singh and BP Bhatt MK Dhakar ICAR Research Complex for Eastern Region Research Centre, Abstract Plandu, Ranchi, Jharkhand, The present study (during year 2014 and 2015) examined the various fruit traits of 10 popular varieties of India mango, Mangifera indica in relation to resistance against B. dorsalis under field conditions. Results indicated significant variations among tested varieties in levels of fruit infestation and maggot density Debu Mukherjee inside the fruit. The varieties Amrapali (6.67%), Gulab Khas (20.00%) and Dashehari (15.00%) were ICAR Research Complex for found resistant; Jardalu (21.67%) and Maldah (25.00%) were moderately resistant; Himsagar (36.67%) Eastern Region Research Centre, were susceptible while Chausa (40.00%), Mallika (58.33%), Fazli (58.33%) and Bombay Green Plandu, Ranchi, Jharkhand, (61.67%) were found the highly susceptible to B. dorsalis infestation. Principal components were India extracted based on fruit traits and first four principal components explained cumulative variation of 89.97 % with eigenvalues >0.5 in B. dorsalis infestation. Mango varieties Amrapali, Gulab Khas and Dashehari Moanaro, Bikash Das ICAR Research Complex for were classified as resistant to B.
    [Show full text]
  • 2021 Annual Report of the Faculty Executive Committee
    UNIVERSITY OF CALIFORNIA DAVIS VOLUME XLVII ANNUAL REPORT OF THE FACULTY OF THE COLLEGE OF AGRICULTURAL & ENVIRONMENTAL SCIENCES MAY 2021 TABLE OF CONTENTS Page I. ANNOUNCEMENTS ________________________________________________________ 3 II. ANNUAL REPORT BY ADMINISTRATIVE OFFICER _________________________________ 3 A. Summary of Executive Committee Activities 2020-21—Jorge Rodrigues, Chair _______________ 3 B. Summary of 2021-22 standing committee nominees ____________________________________ 6 C. Summary of the 2020-21 master adviser appointments _________________________________ 7 D. Proposed changes to the college bylaws and regulations #23(A) and 26(A) __________________ 8 E. CA&ES membership (Appendix A) __________________________________________________ 30 Academic Senate _________________________________________________________________________ 30 Academic Federation______________________________________________________________________ 43 III. REPORTS OF STANDING COMMITTEES________________________________________ 10 Graduate Education Committee—Ben Montpetit, Chair ___________________________________ 10 Rules and Jurisdiction Committee—Gregory Pasternack, Chair _____________________________ 12 Student Actions and Commencement Awards Committee—Johan Leveau, Chair _______________ 13 Undergraduate Majors and Courses Committee—Ken Shackel, Chair ________________________ 17 Undergraduate Program Review Committee ____________________________________________ 17 IV. REPORTS FROM CA&ES DEPARTMENTS _______________________________________ 18
    [Show full text]
  • Interaction of Putative Virulent Isolates Among Commercial Varieties Of
    Journal of Pharmacognosy and Phytochemistry 2020; 9(1): 355-360 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2020; 9(1): 355-360 Interaction of putative virulent isolates among Received: 16-11-2019 Accepted: 18-12-2019 commercial varieties of mango under protected condition Devappa V Department of Plant Pathology, College of Horticulture, UHS Devappa V, Sangeetha CG and Ranjitha N Campus, GKVK Post, Bengaluru, Karnataka, India Abstract Sangeetha CG The present study was undertaken to know the interaction of the putative Colletotrichum gloeosporioides Department of Plant Pathology, isolates from different regions of Karnataka. The cultural characteristics among the 10 isolates studied, College of Horticulture, UHS showed that isolates Cg-1, Cg-2, Cg-4, Cg-5, Cg-6, Cg-7, Cg-8, Cg-10 were circular with smooth margin Campus, GKVK Post, both on 7th and 12th day of inoculation. Excellent sporulation was observed in Cg-8 and Cg-4 isolate, Bengaluru, Karnataka, India good sporulation was observed in Cg-3 and Cg-9 isolates whereas, medium sporulation in Cg-1, Cg-2, Cg-5, Cg-6 and Cg-7 isolates and poor sporulation was observed in Cg-10 isolate. Among the varieties Ranjitha N tested, none of them showed immune and resistant reaction to the disease under shade house condition. Department of Plant Pathology, Dasheri (20%) exhibited moderately resistant reaction, Totapuri (28%) and Himayudhin (29.70%) College of Horticulture, UHS Campus, GKVK Post, exhibited moderately susceptible reaction whereas, Mallika (35%) and Kesar (47.30%) exhibited Bengaluru, Karnataka, India susceptible reaction. Alphanso (62.50%), Neelam (56.20%) and Raspuri (75%) exhibited highly susceptible reaction.
    [Show full text]
  • Economics Analysis of Mango Orchard Production Under Contract Farming in Taluka Tando Adam District Sanghar Sindh, Pakistan
    Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.5, No.11, 2015 Economics Analysis of Mango Orchard Production under Contract Farming in Taluka Tando Adam District Sanghar Sindh, Pakistan Ms. Irfana NoorMmemon *1 Sanaullah Noonari 1 Muhammad Yasir Sidhu 2 Mmuhammad Usman Arain 2 Riaz Hhussain Jamali 2 Aamir Ali Mirani 2 Akbar Khan Khajjak 2 Sajid Ali Sial 2 Rizwan Jamali 2 Abdul Hameed Jamro 2 1. Assistant Professor, Department of Agricultural Economics, Faculty of Agricultural Social Sciences, Sindh Agriculture University, Tandojam Pakistan 2. Student, Department of Agricultural Economics, Faculty of Agricultural Social Sciences,Sindh Agriculture University, Tandojam Pakistan E-mail: [email protected] Abstract The present study has been designed to investigate cost of production, and returns per acre of mango fruit. A sample of 60 mango farmers was taken purposively from various villages in taluka Tando Adam district Sanghar Sindh Pakistan. The objective was to work out benefit cost ratio and net present worth of growing mango orchard. The mango growers in study area on average per farm spent a sum of Rs. 38000.00. This included Rs. 6000.00 for loading, Rs. 16000.00 for transportation and Rs. 6000.00 of unloading respectively in the study area. The mango grower in the study area on average per acre spent a total cost of production of Rs. 203762.00 this included Rs.80000.00, Rs.28847.00, Rs.56915.00 and Rs.38000.00 on fixed cost, labour costs, Capital Inputs and marketing costs respectively in the study area.
    [Show full text]
  • Effect of Potassium Metabisulphite and Temperature on Hot Air Drying of Dasheri Mango Slices
    Science Letters ISSN 2345-5463 – An International Triannually Journal Research article 2019 | Volume 7 | Issue 2 | Pages 91-98 ARTICLE INFO Open Access Received Effect of Potassium Metabisulphite and February 23, 2019 Accepted Temperature on Hot Air Drying of May 14, 2019 Published Dasheri Mango Slices August 15, 2019 Mustapha Muhammad Nasiru1, 2*, John Diamond Raj1, Kailash 1 Chandra Yadav *Corresponding Author 1 Department of Food Process Engineering, Vaugh School of Agricultural Engineering & Mustapha Muhammad Nasiru Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, E-mail Allahabad-211007, Uttar Pradesh, India [email protected] 2 Department of Food Science and Technology, Federal University, Dutsin-Ma, Katsina Phone State, Nigeria +2348035915739 Abstract Food products are pre-treated with chemicals to dry as quick as possible, retain Keywords product quality and minimize energy cost. In this study, the effect of Dasheri mango slices temperature and potassium metabisulphite (KMS) pre-treatment on Dasheri Hot air dryer mango slices dehydrated using hot air oven was studied. Three temperatures Pre-treatment (50ºC, 60ºC and 70ºC) and KMS pre-treatment levels (0.5%, 1% and 1.5%), Potassium metabisulphite as well as control samples, were used for the study. From the dehydrating Rehydration ratio curve, it was observed that the drying of the mango slices occurred on the falling rate stage. Around 5.5%-31.7% of the final moisture was achieved on dry weight basis in the mango slices and the drying time ranges from How to Cite 390-690 min at all the drying temperatures and pre-treatment levels. The Nasiru MM, Raj JD, Yadav rehydration ratio of the mango slices ranged from 2.52 to 3.54 while KC.
    [Show full text]
  • JULY 2016 Our Next Meeting Is Monday, July 18Th at 4701 Golden Gate Parkway Which Is the Golden Gate Community Center
    COLLIER FRUIT GROWERS NEWSLETTER JULY 2016 Our next meeting is Monday, July 18th at 4701 Golden Gate Parkway which is the Golden Gate Community Center. The topic is going to be " Unusual and Rare Fruit Trees that Adapt or May Adapt to Cultivation in Florida". There will not be an August meeting. See you in September Our speaker is Berto Silva, a native Brazilian who specializes in growing rare and unusual fruits. Berto was raised in northeast Brazil where he learned to enjoy several different types of fruits. In the last twenty years, he has experimented growing rare and unusual fruits from all over the world including some varieties native to the Amazon region. He has a spectacular jaboticaba arbor at his home in South Ft. Myers. He is an active member with the Bonita Springs Tropical Fruit Club and with the Caloosa Rare Fruit Exchange. Berto’s collection includes myrciarias, eugenias, pouterias, annonas, mangiferas, and campomanesias. The meeting starts at 7:30 pm at the Community Center, 4701 Golden Gate Parkway in Golden Gate City. The tasting table opens at 7:00 pm. BURDS’ NEST OF INFORMATION THIS and THAT FOR JULY MANGOS MANGOS MANGOS We suggest that you attend: The International Mango Festival is at Fairchild Tropical Botanical Garden on July 9 th &10 th from 9am -4pm. Saturday is the better day to go. The University of Florida Collier County Extension on Saturday July 16 th from 9am – 1pm presents “Alternatives to Citrus - Mango and Fruit Trees for you yard” with Steve from Fruit Scapes & the Burds.
    [Show full text]
  • Mango Production in Pakistan; Copyright © 1
    MAGO PRODUCTIO I PAKISTA BY M. H. PAHWAR Published by: M. H. Panhwar Trust 157-C Unit No. 2 Latifabad, Hyderabad Mango Production in Pakistan; Copyright © www.panhwar.com 1 Chapter No Description 1. Mango (Magnifera Indica) Origin and Spread of Mango. 4 2. Botany. .. .. .. .. .. .. .. 9 3. Climate .. .. .. .. .. .. .. 13 4. Suitability of Climate of Sindh for Raising Mango Fruit Crop. 25 5. Soils for Commercial Production of Mango .. .. 28 6. Mango Varieties or Cultivars .. .. .. .. 30 7. Breeding of Mango .. .. .. .. .. .. 52 8. How Extend Mango Season From 1 st May To 15 th September in Shortest Possible Time .. .. .. .. .. 58 9. Propagation. .. .. .. .. .. .. .. 61 10. Field Mango Spacing. .. .. .. .. .. 69 11. Field Planting of Mango Seedlings or Grafted Plant .. 73 12. Macronutrients in Mango Production .. .. .. 75 13. Micro-Nutrient in Mango Production .. .. .. 85 14. Foliar Feeding of Nutrients to Mango .. .. .. 92 15. Foliar Feed to Mango, Based on Past 10 Years Experience by Authors’. .. .. .. .. .. 100 16. Growth Regulators and Mango .. .. .. .. 103 17. Irrigation of Mango. .. .. .. .. .. 109 18. Flowering how it takes Place and Flowering Models. .. 118 19. Biennially In Mango .. .. .. .. .. 121 20. How to Change Biennially In Mango .. .. .. 126 Mango Production in Pakistan; Copyright © www.panhwar.com 2 21. Causes of Fruit Drop .. .. .. .. .. 131 22. Wind Breaks .. .. .. .. .. .. 135 23. Training of Tree and Pruning for Maximum Health and Production .. .. .. .. .. 138 24. Weed Control .. .. .. .. .. .. 148 25. Mulching .. .. .. .. .. .. .. 150 26. Bagging of Mango .. .. .. .. .. .. 156 27. Harvesting .. .. .. .. .. .. .. 157 28. Yield .. .. .. .. .. .. .. .. 163 29. Packing of Mango for Market. .. .. .. .. 167 30. Post Harvest Treatments to Mango .. .. .. .. 171 31. Mango Diseases. .. .. .. .. .. .. 186 32. Insects Pests of Mango and their Control .
    [Show full text]
  • Retail Dietitian Activation
    NATIONAL MANGO BOARD RETAIL DIETITIAN ACTIVATION KIT WHAT’S INSIDE Q1: Health and Wellness Activation Ideas 4 How to Cut a Mango 5 Smoothie Demonstration Guide 6 Blog/Newsletter Inspiration 8 Social Media Posts 9 Mango Rose Tutorial 9 Q2: Plant-based Activation Ideas 10 Mango Varieties 11 How to Choose a Mango 11 Cinco de Mango Segment Execution Guide 12 Social Media Posts 15 Q3: Summer Celebrations and Back to School Activation Ideas 16 Grilled Mango Recipe Demonstration Guide 17 Mango a Day, the Super Fun Way 18 Social Media Posts 19 Q4: Healthy Holidays Activation Ideas 20 Pistachio Crusted Mango Cheese Log Recipe 21 Celebrate Healthy Skin Month with Mangos 22 Social Media Posts 23 GET TO KNOW THE KING OF FRUITS Mangos are the sunniest fruit in the produce aisle and they’re available year round, yet many shoppers only tend to think of mangos in the spring and summer. Sometimes shoppers pass over mangos because they’re unsure about how to choose them, or they don’t know how to cut or prepare mangos. Others can’t find mangos or simply don’t think about them when shopping for produce. Even though mangos are the most popular fruit in the world, they’re still considered new for some consumers. Our goal is to shift mangos from exotic to every day, and we’d love your help! That’s why we’ve created this retail dietitian toolkit, so you can help bring the world’s love of mangos to your shoppers. You’ll find loads of delicious ideas to inspire them to add more mangos to their cart, along with details on mango’s nutrition story to help your shoppers appreciate the health benefits, and tips on how to select and prepare mangos.
    [Show full text]
  • Model Profile for 1.0 Ha Mango Cultivation
    Model Profile for 1.0 ha Mango Cultivation 1. Introduction Mango (Mangifera indica) is the leading fruit crop of India and considered to be the king of fruits. Besides delicious taste, excellent flavour and attractive fragrance, it is rich in vitamin A&C. The tree is hardy in nature, can be grown in a variety of soil and requires comparatively low maintenance costs. Mango fruit is utilised at all stages of its development both in its immature and mature state. Raw fruits are used for making chutney, pickles and juices. The ripe fruits besides being used for desert are also utilised for preparing several products like squashes, syrups, nectars, jams and jellies. The mango kernel also contains 8-10 percent good quality fat which can be used for soap and also as a substitute for cocoa butter in confectionery. 2. Scope for Mango Cultivation and its National Importance Mango occupies about 36% of the total area under fruits (2010-11) comprising of 22.97 lakh hectares, with a total production of 151.88 lakh tonnes. Uttar Pradesh and Andhra Pradesh are having the largest area under mango each with around 23% of the total area followed by Karnataka, Bihar, Gujarat and Tamilnadu. Fresh mangoes and mango pulp are the important items of agri-exports from India. India's main export destinations for mango are UAE, Bangladesh, UK, Saudi Arabia, Nepal, Kuwait, USA and other Middle East countries with a limited quantity being shipped to European market. Although, India is the largest mango producing country, accounting about 45% of world production, the export of fresh fruit is limited to Alphonso and Dashehari varieties.
    [Show full text]
  • Changes in the Sensory Characteristics of Mango Cultivars During the Production of Mango Purée and Sorbet
    DIFFERENCES IN SENSORY CHARACTERISTICS AMONG VARIOUS MANGO CULTIVARS IN THE FORM OF FRESH SLICED MANGO, MANGO PURÉE, AND MANGO SORBET by CHRISTIE N. LEDEKER B.S., University of Delaware, 2008 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Interdisciplinary Food Science Graduate Program Department of Human Nutrition KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 Approved by: Major Professor Dr. Delores H. Chambers Abstract Fresh mangoes are highly perishable, and therefore, they are often processed to extend shelf-life and facilitate exportation. Studying the transformation that mango cultivars undergo throughout processing can aid in selecting appropriate varieties for products. In the 1st part of this study, the flavor and texture properties of 4 mango cultivars available in the United States (U.S.) were analyzed. Highly trained descriptive panelists in the U.S. evaluated fresh, purée, and sorbet samples prepared from each cultivar. Purées were made by pulverizing mango flesh, passing it through a china cap, and heating it to 85 °C for 15 s. For the sorbets, purées were diluted with water (1:1), sucrose was added, and the bases were frozen in a batch ice cream freezer. Much of the texture variation among cultivars was lost after fresh samples were transformed into purées, whereas much of the flavor and texture variation among cultivars was lost once fresh mangoes and mango purées were transformed into sorbets. Compared to the other cultivars, Haden and Tommy Atkins underwent greater transformations in flavor throughout sorbet preparation, and processing reduced the intensities of some unpleasant flavors in these cultivars.
    [Show full text]
  • Buchanania Obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum
    foods Article Buchanania obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum Selina A. Fyfe 1,2 ID , Gabriele Netzel 2, Michael E. Netzel 2 and Yasmina Sultanbawa 2,* ID 1 School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072 Australia; [email protected] 2 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd Coopers Plain;, PO Box 156, Archerfield, QLD 4108, Australia; [email protected] (G.N.); [email protected] (M.E.N.) * Correspondence: [email protected]; Tel.: +61-7-3443-2471 Received: 13 April 2018; Accepted: 26 April 2018; Published: 4 May 2018 Abstract: The green plum is the fruit of Buchanania obovata Engl. and is an Australian Indigenous bush food. Very little study has been done on the green plum, so this is an initial screening study of the functional properties and phytochemical profile found in the flesh and seed. The flesh was shown to have antimicrobial properties effective against gram negative (Escherichia coli 9001—NCTC) and gram positive (Staphylococcus aureus 6571—NCTC) bacteria. Scanning electron microscopy analysis shows that the antimicrobial activity causes cell wall disintegration and cytoplasmic leakage in both bacteria. Antioxidant 2,2-diphenyl-1-picrylhydrazyl (DPPH) testing shows the flesh has high radical scavenging activity (106.3 ± 28.6 µM Trolox equivalant/g Dry Weight in methanol). The flesh and seed contain a range of polyphenols including gallic acid, ellagic acid, p-coumaric acid, kaempferol, quercetin and trans-ferulic acid that may be responsible for this activity.
    [Show full text]