Oceanography of the Indonesian Seas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fish Drying in Indonesia
The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agri cultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. Recent numbers in the series are listed inside the back cover. © Australian Centre for International Agricultural Research. GPO Box 1571, Canberra. ACT 2601 Champ. BR and Highley. E .• cd. 1995. Fish drying in Indonesia. Proceedings of an international workshop held at Jakarta. Indonesia. 9-10 February 1994. ACIAR Proceedings !'Io. 59. 106p. ISBN I 86320 144 0 Technical editing. typesetting and layout: Arawang Information Bureau Ply Ltd. Canberra. Australia. Fish Drying in Indonesia Proceedings of an international workshop held at Jakarta, Indonesia on 9-10 February 1994 Editors: B.R. Champ and E. Highley Sponsors: Agency for Agricultural Research and Development, Indonesia Australian Centre for International Agricultural Research Contents Opening Remarks 5 F. Kasryno Government Policy on Fishery Agribusiness Development 7 Ir. H. Muchtar Abdullah An Overview of Fisheries and Fish Proeessing in Indonesia 13 N. Naamin Problems Assoeiated with Dried Fish Agribusiness in Indonesia 18 Soegiyono Salted Fish Consumption in Indonesia: Status and Prospects 25 v.T. -
Pelagic Fish Catch Or Other Means Reposting, Photocopy Machine, Is Only W Permitted Around Java E Oceanography Society
or collective redistirbution of any portion article of any by of this or collective redistirbution Th THE INDONESIAN SEAS articleis has been in published Oceanography Seasonal Variation of 18, Number journal of Th 4, a quarterly , Volume Pelagic Fish Catch permitted only w is photocopy machine, reposting, means or other Around Java 2005 by Th e Oceanography Copyright Society. BY NANI HENDIARTI, SUWARSO, EDVIN ALDRIAN, of Th approval the ith KHAIRUL AMRI, RETNO ANDIASTUTI, gran e Oceanography is Society. All rights reserved. Permission SUHENDAR I. SACHOEMAR, or Th e Oceanography [email protected] Society. Send to: all correspondence AND IKHSAN BUDI WAHYONO ted to copy this article Repu for use copy this and research. to in teaching ted e Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. blication, systemmatic reproduction, reproduction, systemmatic blication, 112 Oceanography Vol. 18, No. 4, Dec. 2005 WE PRESENT DATA on the seasonal variability of small and 1.26 million ton/year in the Indonesian EEZ. Pelagic fi sh pelagic fi sh catches and their relation to the coastal processes play an important role in the economics of fi sherman in Indo- responsible for them around the island of Java. This study uses nesia; approximately 75 percent of the total fi sh stock, or 4.8 long fi sh-catch records (up to twenty years) collected at vari- million ton/year, is pelagic fi sh. In particular, we investigated ous points around Java that were selected from the best-qual- the waters around Java because most people live near the coast ity harbor records. -
1 Investigation of the Energy Potential from Tidal Stream
INVESTIGATION OF THE ENERGY POTENTIAL FROM TIDAL STREAM CURRENTS IN INDONESIA Kadir Orhan1, Roberto Mayerle1, Rangaswami Narayanan1 and Wahyu Widodo Pandoe2 In this paper, an advanced methodology developed for the assessment of tidal stream resources is applied to several straits between Indian Ocean and inner Indonesian seas. Due to the high current velocities up to 3-4 m/s, the straits are particularly promising for the efficient generation of electric power. Tidal stream power potentials are evaluated on the basis of calibrated and validated high-resolution, three-dimensional numerical models. It was found that the straits under investigation have tremendous potential for the development of renewable energy production. Suitable locations for the installation of the turbines are identified in all the straits, and sites have been ranked based on the level of power density. Maximum power densities are observed in the Bali Strait, exceeding around 10kw/m2. Horizontal axis tidal turbines with a cut-in velocity of 1m/s are considered in the estimations. The highest total extractable power resulted equal to about 1,260MW in the Strait of Alas. Preliminary assessments showed that the power production at the straits under investigation is likely to exceed previous predictions reaching around 5,000MW. Keywords: renewable energy; tidal stream currents; numerical model; Indonesia INTRODUCTION The global energy supply is facing severe challenges in terms of long-term sustainability, fossil fuel reserve exhaustion, global warming and other energy related environmental concerns, geopolitical and military conflicts surrounding oil rich countries, and secure supply of energy. Renewable energy sources such as solar, wind, wave and tidal energy are capable of meeting the present and future energy demands with ease without inflicting any considerable damage to global ecosystem (Asif et al. -
Tropical Cyclone Cempaka 'Visiting' Indonesia Right After Facing Bali's
Tropical Cyclone Cempaka ‘Visiting’ Indonesia Right after facing Bali's Mount Agung eruption, Indonesia encounters another natural event when tropical cyclone ‘Cempaka’ hits Indonesia on 27th November 2017. Jakarta- Tropical Cyclone Warning Center (TCWC) Jakarta detected a tropical cyclone developing very close to the Southern Coast of Java. The tropical cyclone named ‘Cempaka’, has made BMKG to warn the public to prepare for extreme weather impacts for the next three days. BMKG inform the public that there are some extreme conditions causes by Cempaka such as heavy reainfall, strong winds and thunderstorms that will hit some areas of Indonesia. These heavy rains with strong winds up to 30 knots will hit Jakarta, West Java, Central Java Tengah, Yogyakarta, East Java, Kangean Island, Bali, Nusa Tenggara, and the Southern part of Java Sea. TCWC Jakarta predicts that Cempaka will remain for the next two to three days. TCWC also sending alert to public about high wave potential cause by this cyclone that up to 2.5 - 6 meters in, South Coast of East Java, the Eastern part of Java Sea, Bali Waters, Bali Strait, Alas Strait, Southern part of Lombok Strait, and Sumbawa Sea. BMKG issued warning to the public and advised people to remain calm but be aware about the following impacts that can be caused by the cyclone, such as floods, landslides, flash floods, puddles, strong winds, fallen trees, and slippery roads. Flight activities at several airports in Java may also be affected due to heavy rain and strong winds. Due to possible high sea waves, people and passing vessels are encouraged to remain on alert, especially traditional fishermen operating in the Southern Waters of Java. -
East Java – Bali Power Distribution Strengthening Project
*OFFICIAL USE ONLY PT PLN (Persero) East Java – Bali Power Distribution Strengthening Project Environmental & Social Management Planning Framework (Version for Disclosure) January 2020 *OFFICIAL USE ONLY BASIC INFORMATION 1. Country and Project Name: Indonesia – East Java & Bali Power Distribution Strengthening Project 2. Project Development Objective: The expansion of the distribution network comprises erection of new poles, cable stringing, and installation of distribution transformers. 3. Expected Project Benefits: Construction of about 17,000 km distribution lines and installation of distribution transformers in East Java and Bali 4. Identified Project Environmental and Social Risks: Social Risks. It is envisaged that this project will require (i) use of no more than 0.2 m2 of land for installation of concrete poles and approximately 4m2 for installation of transformers (either in cabinet of between two concrete poles or on one pole); limited directional drilling (approx. 200-300m) to run cables under major roads and limited trenching (usually less than 500m) in urban environments, and (iii) possible removal of non-land assets (primarily trimming or felling of trees) for stringing of conductors. While restrictions on land use within the existing right of way apply, the land requirements for the distribution network (lines and transformers) are considered manageable with normal mitigation measures. Project activities will not (i) require land acquisition, (ii) cause physical or economic displacement; and/or (ii) result in adverse impacts to Indigenous Peoples groups and/or members of ethnic minorities. Environmental risks are principally induced by the establishment of the network across natural habitats and potential impact on fauna (in particular avifauna and terrestrial fauna susceptible to access the distribution lines or transformers such as monkeys or other tree dwelling scavenging animals that frequent semi urban environments), and the management of waste (e.g. -
Indonesian Marine Fisheries Development and Strategy Under Extended Maritime Jurisdiction
East-West Environment and Policy Institute Research Report No. 13 Indonesian Marine Fisheries Development and Strategy under Extended Maritime Jurisdiction by Salvatore Comitini Sutanto Hardjolukito East-West Center Honolulu, Hawaii THE EAST-WEST CENTER is an educational institution established in Hawaii in 1960 by the United States Congress. The Center's mandate is "to promote better relations and understanding among the nations of Asia, the Pacific, and the United States through cooperative study, training, and research." Each year more than 1,500 graduate students, scholars, professionals in business and government, and visiting specialists engage in research with the Center's interna• tional staff on major issues and problems facing the Asian and Pacific region. Since 1960, more than 30,000 men and women from the region have participated in the Center's cooperative programs. The Center's research and educational activities are conducted in five institutes- Communication, Culture Learning, Environment and Policy, Population, and Re• source Systems—and in its Pacific Islands Development Program, Open Grants, and Center-wide programs. Although principal funding continues to come from the U.S. Congress, more than 20 Asian and Pacific governments, as well as private agencies and corporations, have provided contributions for program support. The East-West Center is a public, nonprofit corporation with an international board of governors. THE EAST-WEST ENVIRONMENT AND POLICY INSTITUTE was established in October 1977 to increase understanding of the interrelationships among policies designed to meet a broad range of human and societal needs over time and the nat• ural systems and resources on which these policies depend or impact. -
Ijen, Indonesia Geographical and Geological Summary
Applicant UNESCO Global Geopark Ijen, Indonesia Geographical and geological summary 1. Physical and human geography summary The aUGGp Ijen area is located at the easternmost tip of Java Island in East Java Province included in the territory of the unitary Republic of Indonesia which includes 2 districts, Banyuwangi and Bondowoso Regency. The location is bordered in the north by Situbondo Regency, in the east with the Bali Strait, in the south with the Indian Ocean, and in the west with Jember Regency. The Ijen area is formed by three different layers of mountains, Giant Volcanic Complex in the north, Ancient Volcanic Hills in the southwest, and Karst Hills in the southeast. However, the main attraction in that area is the Ijen Crater. The volcano, which is 2369 m above sea level, has phenomenal blue flames and also a crater lake. Topographic altitude at the geopark area are between 0 m asl (coastal area) until 3212.5 m asl (the top of topography at the eastern rim of Raung volcano), As an area that borders the sea and the strait, the eastern tip of Java is an area of human crossing and trade intersection, making it a place of cross-cultural intersections and multicultural identities that are represented in a variety of cultures, arts, and traditions. The landscape also creates an agrarian and coastal culture which is still well preserved today. The total population in this area is 1,842,363 people with the composition of the Using, Javanese, Madurese, Balinese, Arabic, Chinese, and Bugis ethnic groups. 2. Geological Summary The early history of Ijen was centered on a single giant volcano which is estimated to have reached an altitude of 3500 m. -
General Circulation in the Malacca Strait and Andaman Sea: a Numerical Model Study
American Journal of Environmental Science, 2012, 8 (5), 479-488 ISSN: 1553-345X ©2012 Science Publication doi:10.3844/ajessp.2012.479.488 Published Online 8 (5) 2012 (http://www.thescipub.com/ajes.toc) General Circulation in the Malacca Strait and Andaman Sea: A Numerical Model Study 1Syamsul Rizal, 2Peter Damm, 1Mulyadi A. Wahid, 2Jurgen Sundermann, 1Yopi Ilhamsyah, 3Taufiq Iskandar and 1Muhammad 1Jurusan Ilmu Kelautan, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia 2Institut fur Meereskunde, Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany 3Jurusan Matematika, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia Received 2012-05-10, Revised 2012-08-11; Accepted 2012-08-11 ABSTRACT In the Andaman Sea and Malacca Strait, as in other parts of the Indian Ocean, the seasonal change of the wind plays a most important role: the south-west (hereafter SW) is monsoon active from June through September and the north-east (hereafter NE) monsoon is active from December through February. During the NE monsoon the winds are directed from the north and northeast to the south-west, and during the SW monsoon from the south-west to the north-east. Strong winds between June and September lead to maximum rainfall over most parts of the Indian subcontinent. These areas are also greatly influenced by the tides. The circulation in the Andaman Sea and the Malacca Strait is simulated with a three-dimensional baroclinic primitive equation model. In order to run the model, the HAMSOM model is used. The model is forced by tides at the open boundaries as well as by wind and heat flux. -
Driving Change in South East Asian Trawl Fisheries, Fishmeal Supply, And
Driving change in South East Asian trawl fisheries, fishmeal supply, and aquafeed Report to IFFO, The Marine Ingredients Organisation and the Global Aquaculture Alliance (GAA) by Duncan Leadbitter Director Fish Matter Pty Ltd August, 2019 1 About the Project sponsors IFFO, The Marine Ingredients Organisation IFFO represents the marine ingredients industry worldwide. IFFO’s members reside in more than 50 countries, account for over 50% of world production and 75% of the fishmeal and fish oil traded worldwide. Approximately 5 million tonnes of fishmeal are produced each year globally, together with 1 million tonnes of fish oil. IFFO’s headquarters are located in London in the United Kingdom and it also has offices in Lima, Peru, and in Beijing, China. IFFO is an accredited Observer to the UN Food and Agriculture Organisation (FAO). To find out more, visit www.iffo.net. The Global Aquaculture Alliance (GAA) The Global Aquaculture Alliance is an international, non-profit trade association dedicated to advancing environmentally and socially responsible aquaculture. Through the development of its Best Aquaculture Practices certification standards, GAA has become the leading standards-setting organization for aquaculture seafood. To find out more, visit https://www.aquaculturealliance.org/ 2 Executive Summary Information is generally lacking about South East Asian (SEA) fisheries in terms of their biology, fishing practices, and environmental impact, as well as their contributions for social (e.g. employment, food security implications), or economic (e.g. value, trade dynamics) factors. Some social and fisheries management issues are well known and attract criticism right across the fisheries, fishmeal/oil, aquafeed, aquaculture, seafood and retail sectors. -
1. Geography 2. Socioeconomy
Chapter 1 The Brantas River Basin 1. Geography (1) Location......................................................,.........................4 (2) Population................................,....................,........................5 (3) Topographyandgeology.............................................................7 (4) Climate..."..".."."........."...........".."."..m."."""....."."....."".9 (5) Rivers..................................................................................11 2. Socioeconomy (1) Society and culture...................................................................I3 (2) Politicsandnationaldefense....................................................,...15 (3) Economy..............................................................................17 (4) Industry..m.",.,........."..""."..,......................"......m..".....""18 3. Brantas Basin Characteristics (1) Watercourseoutline............................,...,........,........................25 (2) Hydrology"".".".."."....."."."""."........"..........."..",".".."".28 (3) Irrigation.,..............,..............................................................30 (4) Rainfallandrunoffcharacteristics..................................................31 (5) Floodwaters ofBrantas'mainstream ............................................33 (6) Eruption of Mount Kelud...""......."........"...""..""".............""..35 Chapter 2 History of Brantas River Basin Development Project 1. Brantas Project Development (1) Overview..............................................................................40 -
Catch Dynamics of Small Pelagic Fishes at Bali Strait & South Java
INTERNATIONAL SYMPOSIUM DRIVERS OF DYNAMICS OF SMALL PELAGIC FISH RESOURCES MARCH 6-11, 2017 VICTORIA, CANADA Catch dynamics of small pelagic fishes at Bali Strait & South Java Sea in relation to the climatic regime shift: case study on Sardinella lemuru Aida Sartimbul, Erfan Rohadi, Defri Yona, Hideaki Nakata, Jogi Arleston, Iwan T Wibowo, Kirana F Setiabudi, Kharisma W Sesanti Marine Science Resources Exploration and Management Research Group Marine Science Dept. of Brawijaya University, Malang, Indonesia Information Management, State Polytechnic of Malang, Indonesia Fisheries Faculty, Nagasaki University, Japan Outline: • Introduction • Objective • Data and Methods • Result and Discussion • Small Pelagic Fish CPUE Trend • Seasonal Variation • Inter-annual Variation • Regime Shift • Summary Background S. Lemuru (SPF) main species target of Bali Strait (80-90%), followed by Decapterus spp. and Euthynus spp. (Merta et al., 1995; Hendiarti et al, 2005) S. Lemuru supporting public health ( >25% of total sardine oil were contained omega-3 fatty acid) (Sartimbul et al., 2015) It was disappeared in 2010 to 2012 it gave impact on economics loss mainly for coastal community Limited study related to the SPF dynamics and its relation to the climate change and regime shift in Indonesia………. Objectives Understanding the variability of SPF catch Understanding the SPF catch composition and its relation to the oceanographic features Understanding the SPF catch variability in relation to the regime shift and climate variability Introduction Material and Methods Result and Discussion Conclusion 1st Station : 1140 26’ 11” BT 08 27’ 14” LS Study Area 2nd Station : 1140 34’ 43” BT 08 37’ 08” LS 3rd Station : 1140 40’16 BT 08 42’ 18” LS (Fishing Ground at Bali Strait Temperature and Clorophyl-a Insitu Data : June – December 2013 Temperature and Clorophyl-a Satellite Data : February 2002 - April 2015 Introduction Material and Methods Result and Discussion Conclusion Sampling site of South Java (Fishing ground of S. -
Hydrographic Observations . •
• HYDROGRAPHIC OBSERVATIONS . • Morphology of the Java Sea and the S. China Sea, and of the Strait of Malacca. Limits, extents and contents. The entire bottom of the Java Sea, the S. China Sea and the Str8it of Malacca is part of the East Asiatic shelf which, as far as the Neth. East Jndies • are concerned, sLetches. as far as the roo fathom line of the Strait ofMalacca, the West coast of Sumatra and the South coast of Java. To the East this shelf • is bounded by the same depth line in the Strait of Macassar and :,n the Bali Sea. The accompanying deep sea charts on which the isobathic lines for ro, 20, 3°,40 M. etc. have been traced, were composed after the soundings occur• .ring on the sea charts issued by the N.E.I. Admiralty, complemented with soundings taken on boar4 the exploration craft "Brak" itself. The courses followed being mostly at right angles to the depth lines, and the stations on each of the cruises being different, these depth lines could be traced with a fair degree of accuracy, thanks to the numerous soundings. The 20 M. line in the Java Sea E. of Sumatra and that for 50 M. and upwards in the eastern• most part of that sea are less accurate owing to the inequality of the sea-bot• tom there. The sea-charts of the area situated between 6° Lat. S. and the Kangean islands have not yet appeared; these waters indeed we had to avoid as the navigation was too perilous for us to explore them.