Pelagic Fish Catch Or Other Means Reposting, Photocopy Machine, Is Only W Permitted Around Java E Oceanography Society

Total Page:16

File Type:pdf, Size:1020Kb

Pelagic Fish Catch Or Other Means Reposting, Photocopy Machine, Is Only W Permitted Around Java E Oceanography Society or collective redistirbution of any portion article of any by of this or collective redistirbution Th THE INDONESIAN SEAS articleis has been in published Oceanography Seasonal Variation of 18, Number journal of Th 4, a quarterly , Volume Pelagic Fish Catch permitted only w is photocopy machine, reposting, means or other Around Java 2005 by Th e Oceanography Copyright Society. BY NANI HENDIARTI, SUWARSO, EDVIN ALDRIAN, of Th approval the ith KHAIRUL AMRI, RETNO ANDIASTUTI, gran e Oceanography is Society. All rights reserved. Permission SUHENDAR I. SACHOEMAR, or Th e Oceanography [email protected] Society. Send to: all correspondence AND IKHSAN BUDI WAHYONO ted to copy this article Repu for use copy this and research. to in teaching ted e Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. blication, systemmatic reproduction, reproduction, systemmatic blication, 112 Oceanography Vol. 18, No. 4, Dec. 2005 WE PRESENT DATA on the seasonal variability of small and 1.26 million ton/year in the Indonesian EEZ. Pelagic fi sh pelagic fi sh catches and their relation to the coastal processes play an important role in the economics of fi sherman in Indo- responsible for them around the island of Java. This study uses nesia; approximately 75 percent of the total fi sh stock, or 4.8 long fi sh-catch records (up to twenty years) collected at vari- million ton/year, is pelagic fi sh. In particular, we investigated ous points around Java that were selected from the best-qual- the waters around Java because most people live near the coast ity harbor records. Seven years of ocean color satellite data and an abundance of pelagic fi sh is caught under a variety of were also used in this study. The study selected four regions coastal oceanographic conditions. that represent the four edges of Java. Data analysis shows that Considering the intense fi shery activities adjacent to the the annual fi sh-catch pattern is determined by monsoonal heavily populated island of Java, the Java Sea is presently over- activity. The monsoon greatly infl uences the appearance of exploited for pelagic species (Agency for Marine and Fisheries warm and rich surface currents in the Java Sea, surface water Research [AMFR], 2001). The exploitation rate of pelagic fi sh transport and upwelling in the Sunda Strait, upwelling in the in Indian Ocean of South Java is still 50 percent or less (exploi- Indian Ocean, and indirect upwelling in the Bali Strait (for tation rate is defi ned as catch divided by the natural fi sh stock details on the regional oceanography, see Gordon [this is- at a fi shing zone during the time period) (Luong, 1997; AMFR, sue]). These coastal processes, which differ for each region, 2001). Thus, a study such as this, which looks at the infl uence infl uence fi sh catch and fi sh distribution. The natural fi sh of coastal processes on pelagic fi sheries, will be important for stock of the entire Indonesian seas (including the Exclusive fi sh stock management on seasonal and annual bases. Study of Economic Zone [EEZ]) is estimated to be 6.4 million ton/ coastal processes in the Indonesian seas, particularly around year, of which 63.5 percent are caught annually (Agency of Java, can help the fi sheries community understand how coastal Marine and Fisheries Research [AMFR], 2001). That fi sh processes correlate with fi sh behavior, and their abundance and stock consists of 5.14 million ton/year in Indonesian waters seasonal distribution. Oceanography Vol. 18, No. 4, Dec. 2005 113 DATA AND METHODS al area coverage data with 4-km spatial Banyuwangi (for catches in the Bali We investigated the seasonal variability resolution as well as selected Local Area Strait), Pekalongan and Rembang (for of coastal processes in relation to pe- Coverage (LAC) data with 1-km resolu- catches in the Java Sea), and Cilacap (for lagic fi sh distribution around Java using tion. We produced chlorophyll images catches in the Indian Ocean) (Figure 1). Sea-viewing Wide Field-of-view Sensor using Ocean Chlorophyll 4-band (OC4) Monthly fi sh-catch data dominated by (SeaWiFS) and Moderate Resolution algorithms (O’Reilly et al., 2000). The pelagic fi sh were taken from daily catches Imaging Spectroradiometer (MODIS) chlorophyll determination coeffi cients of fi sherman in the fi shing ground near data of derived chlorophyll concentra- derived from LAC data for Indonesian the harbor. tions (1997–2004) taken from the Aqua waters are less than 0.43 for turbid wa- satellite, pelagic fi sh catch data collected ters and greater than 0.65 for ocean wa- RESULTS AND DISCUSSION from several harbors along the Java ters (Hendiarti, 2003). We used chlorophyll a data to observe coast (1976–2004), and meteorological In addition to Aqua data, we used the seasonal variation of phytoplankton data as given by wind patterns at 850 pelagic fi sh catch data from 1993–2003, blooms around Java. Different coastal millibars (mb). 1992–2002, and 1985–1995, provided by processes infl uence the growth and dis- Using SeaWiFS and MODIS data and the Ministry of Fisheries Affairs, were tribution of phytoplankton (Figure 2). Sea DAS computer software, all provided collected from documented fi sh land- Every year, higher concentrations of chlo- by the Goddard Space Flight Center of ings (the quantities of fi sh caught and rophyll a (> 0.3 mg/m3) were observed in the National Aeronautics and Space Ad- brought back to land by fi sherman) in the Indian Ocean near Cilacap harbor in ministration (NASA), we processed glob- Labuan (for catches in the Sunda Strait), the third quarter (July–September) and lower concentrations in the fi rst quarter (January–March) (Figure 2b). In 1998, a year after a signifi cant El Niño, the in- Nani Hendiarti ([email protected]. 4°N South China Sea go.id) is Program Coordinator, Center for 8 Technology for Natural Resources Inventory, 2°N Kalimantan Agency for the Assessment and Application of Technology, Jakarta, Indonesia. Suwarso 0° is a researcher at the Agency for Marine and Fisheries Research, Jakarta Selatan, Indo- nesia. Edvin Aldrian is a researcher at the 2°S Agency for the Assessment and Application 6 of Technology, Jakarta, Indonesia. Khairul 4°S Java Sea 5 Amri is a researcher at the Agency for Ma- 34 rine and Fisheries Research, Jakarta Selatan, 2 6°S 9 1 7 Indonesia. Retno Andiastuti is a researcher at the Agency for the Assessment and Ap- Java plication of Technology, Jakarta, Indonesia. 8°S Sunda Strait 10 11 Suhendar I. Sachoemar is a researcher at the Agency for the Assessment and Ap- 10°S Bali Strait plication of Technology, Jakarta, Indonesia. Indian Ocean Ikhsan Budi Wahyono is a researcher at 12°S 104°E 106°E 108°E 110°E 112°E 114°E 116°E 118°E 120°E the Agency for the Assessment and Applica- Figure 1. Map of investigation areas, including the main fi shing grounds around Java. tion of Technology, Jakarta, Indonesia. 114 Oceanography Vol. 18, No. 4, Dec. 2005 a b 0.7 Java Sea Sunda Strait 0.6 Indian Ocean Bali Strait 0.5 ) 3 0.4 (mg/m a Figure 2. (a) (opposite page) Chlorophyll a image derived from MODIS data from August 0.3 24, 2004. (b) Average concentrations of chlo- rophyll in the waters around the Java from Chlorophyll 1997 to 2004. (c) Annual changes of sea surface 0.2 temperature (SST) and (d) chlorophyll concen- trations of the study area (for the years 1997– 2004). Note the cooling eff ect and an increase 0.1 of phytoplankton growth in the coastal area of the Indian Ocean near Java because of upwell- ing during the southeast monsoon (June to 0 October). A slight increase in SST in the Java J- O- J- A- J- O- J- A- J- O- J- A- J- O- J- A- J- O- J- A- J- O- J- A- J- O- J- A- J- O- Sea and Sunda Strait may have been caused by S D M J S D M J S D M J S D M J S D M J S D M J S D M J S D strong transport of freshwater and discharges 1997 1998 1999 2000 2001 2002 2003 2004 during the transition phase (March to May). c d 2.5 32 Java Sea Java Sea Sunda Strait Sunda Strait 31 Bali Strait Bali Strait Indian Ocean (upwelling) 2 Indian Ocean (upwelling) 30 ) 3 1.5 29 (mg/m a SST (°C) 28 1 Chlorophyll 27 0.5 26 25 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months Months Oceanography Vol. 18, No. 4, Dec. 2005 115 tensity and extent of phytoplankton dis- seine in the offshore area and pelagic fi sh in new ships greater than 100 GT. Scads tribution in that region from July to Sep- caught by mini purse seine in the near- from the Java Sea were the principal con- tember were found to be less than that in shore area. Scattered shoaling stocks of tributor (approximately 50 percent) to other typical years (Figure 2b). small pelagic species are found also in the high total landing in 1994 from three During the southeast monsoon (June the eastern part of the sea to the Makas- regions surveyed (Figure 3b). Data indi- to October), surface-water cooling and sar Strait and around the southwestern cate that there are two peak seasons of an increase in chlorophyll a concentra- part of the South China Sea.
Recommended publications
  • Fish Drying in Indonesia
    The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agri­ cultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. Recent numbers in the series are listed inside the back cover. © Australian Centre for International Agricultural Research. GPO Box 1571, Canberra. ACT 2601 Champ. BR and Highley. E .• cd. 1995. Fish drying in Indonesia. Proceedings of an international workshop held at Jakarta. Indonesia. 9-10 February 1994. ACIAR Proceedings !'Io. 59. 106p. ISBN I 86320 144 0 Technical editing. typesetting and layout: Arawang Information Bureau Ply Ltd. Canberra. Australia. Fish Drying in Indonesia Proceedings of an international workshop held at Jakarta, Indonesia on 9-10 February 1994 Editors: B.R. Champ and E. Highley Sponsors: Agency for Agricultural Research and Development, Indonesia Australian Centre for International Agricultural Research Contents Opening Remarks 5 F. Kasryno Government Policy on Fishery Agribusiness Development 7 Ir. H. Muchtar Abdullah An Overview of Fisheries and Fish Proeessing in Indonesia 13 N. Naamin Problems Assoeiated with Dried Fish Agribusiness in Indonesia 18 Soegiyono Salted Fish Consumption in Indonesia: Status and Prospects 25 v.T.
    [Show full text]
  • Seriola Dumerili (Greater Amberjack)
    UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Seriola dumerili (Greater Amberjack) Family: Carangidae (Jacks and Pompanos) Order: Perciformes (Perch and Allied Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Greater amberjack, Seriola dumerili. [http://portal.ncdenr.org/web/mf/amberjack_greater downloaded 20 October 2016] TRAITS. The species Seriola dumerili displays rapid growth during development as a juvenile progressing to an adult. It is the largest species of the family of jacks. At adulthood, S. dumerili would typically weigh about 80kg and reach a length of 1.8-1.9m. Sexual maturity is achieved between the age of 3-5 years, and females may live longer and grow larger than males (FAO, 2016). S. dumurili are rapid-moving predators as shown by their body form (Fig. 1) (FLMNH, 2016). The adult is silvery-bluish in colour, whereas the juvenile is yellow-green. It has a characteristic goldish side line, as well as a dark band near the eye, as seen in Figs 1 and 2 (FAO, 2016; MarineBio, 2016; NCDEQ, 2016). DISTRIBUTION. S. dumerili is native to the waters of Trinidad and Tobago. Typically pelagic, found between depths of 10-360m, the species can be described as circumglobal. In other words, it is found worldwide, as seen in Fig. 3, though much more rarely in some areas, for example the eastern Pacific Ocean (IUCN, 2016). Due to this distribution, there is no threat to the population of the species, despite overfishing in certain locations. Migrations do occur, which are thought to be linked to reproductive cycles.
    [Show full text]
  • Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
    G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats.
    [Show full text]
  • Atlantic "Pelagic" Fish Underwater World
    QL DFO - Library / MPO - Bibliothèque 626 U5313 no.3 12064521 c.2 - 1 Atlantic "Pelagic" Fish Underwater World Fish that range the open sea are Pelagic species are generally very Atlantic known as " pelagic" species, to dif­ streamlined. They are blue or blue­ ferentiate them from "groundfish" gray over their backs and silvery­ "Pelagic" Fish which feed and dwell near the bot­ white underneath - a form of tom . Feeding mainly in surface or camouflage when in the open sea. middle depth waters, pelagic fish They are caught bath in inshore travel mostly in large schools, tu. n­ and offshore waters, principally with ing and manoeuvring in close forma­ mid-water trawls, purse seines, gill tion with split-second timing in their nets, traps and weirs. quest for plankton and other small species. Best known of the pelagic popula­ tions of Canada's Atlantic coast are herring, but others in order of economic importance include sal­ mon, mackerel , swordfish, bluefin tuna, eels, smelt, gaspereau and capelin. Sorne pelagic fish, notably salmon and gaspereau, migrate from freshwater to the sea and back again for spawning. Eels migrate in the opposite direction, spawning in sait water but entering freshwater to feed . Underwater World Herring comprise more than one­ Herring are processed and mar­ Atlantic Herring keted in various forms. About half of (Ctupea harengus) fifth of Atlantic Canada's annual fisheries catch. They are found all the catch is marketed fresh or as along the northwest Atlantic coast frozen whole dressed fish and fillets, from Cape Hatteras to Hudson one-quarter is cured , including Strait.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • 1 Investigation of the Energy Potential from Tidal Stream
    INVESTIGATION OF THE ENERGY POTENTIAL FROM TIDAL STREAM CURRENTS IN INDONESIA Kadir Orhan1, Roberto Mayerle1, Rangaswami Narayanan1 and Wahyu Widodo Pandoe2 In this paper, an advanced methodology developed for the assessment of tidal stream resources is applied to several straits between Indian Ocean and inner Indonesian seas. Due to the high current velocities up to 3-4 m/s, the straits are particularly promising for the efficient generation of electric power. Tidal stream power potentials are evaluated on the basis of calibrated and validated high-resolution, three-dimensional numerical models. It was found that the straits under investigation have tremendous potential for the development of renewable energy production. Suitable locations for the installation of the turbines are identified in all the straits, and sites have been ranked based on the level of power density. Maximum power densities are observed in the Bali Strait, exceeding around 10kw/m2. Horizontal axis tidal turbines with a cut-in velocity of 1m/s are considered in the estimations. The highest total extractable power resulted equal to about 1,260MW in the Strait of Alas. Preliminary assessments showed that the power production at the straits under investigation is likely to exceed previous predictions reaching around 5,000MW. Keywords: renewable energy; tidal stream currents; numerical model; Indonesia INTRODUCTION The global energy supply is facing severe challenges in terms of long-term sustainability, fossil fuel reserve exhaustion, global warming and other energy related environmental concerns, geopolitical and military conflicts surrounding oil rich countries, and secure supply of energy. Renewable energy sources such as solar, wind, wave and tidal energy are capable of meeting the present and future energy demands with ease without inflicting any considerable damage to global ecosystem (Asif et al.
    [Show full text]
  • Tropical Cyclone Cempaka 'Visiting' Indonesia Right After Facing Bali's
    Tropical Cyclone Cempaka ‘Visiting’ Indonesia Right after facing Bali's Mount Agung eruption, Indonesia encounters another natural event when tropical cyclone ‘Cempaka’ hits Indonesia on 27th November 2017. Jakarta- Tropical Cyclone Warning Center (TCWC) Jakarta detected a tropical cyclone developing very close to the Southern Coast of Java. The tropical cyclone named ‘Cempaka’, has made BMKG to warn the public to prepare for extreme weather impacts for the next three days. BMKG inform the public that there are some extreme conditions causes by Cempaka such as heavy reainfall, strong winds and thunderstorms that will hit some areas of Indonesia. These heavy rains with strong winds up to 30 knots will hit Jakarta, West Java, Central Java Tengah, Yogyakarta, East Java, Kangean Island, Bali, Nusa Tenggara, and the Southern part of Java Sea. TCWC Jakarta predicts that Cempaka will remain for the next two to three days. TCWC also sending alert to public about high wave potential cause by this cyclone that up to 2.5 - 6 meters in, South Coast of East Java, the Eastern part of Java Sea, Bali Waters, Bali Strait, Alas Strait, Southern part of Lombok Strait, and Sumbawa Sea. BMKG issued warning to the public and advised people to remain calm but be aware about the following impacts that can be caused by the cyclone, such as floods, landslides, flash floods, puddles, strong winds, fallen trees, and slippery roads. Flight activities at several airports in Java may also be affected due to heavy rain and strong winds. Due to possible high sea waves, people and passing vessels are encouraged to remain on alert, especially traditional fishermen operating in the Southern Waters of Java.
    [Show full text]
  • Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean Andrew Bakun, Claude Ray, and Salvador Lluch-Cota
    CoaStalUpwellinO' and Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean Andrew Bakun, Claude Ray, and Salvador Lluch-Cota Abstract /1 Theseasonal intensity of wind-induced coastal upwelling in the western Indian Ocean is investigated. The upwelling off Northeast Somalia stands out as the dominant upwelling feature in the region, producing by far the strongest seasonal upwelling pulse that exists as a; regular feature in any ocean on our planet. It is surmised that the productive pelagic fish habitat off Southwest India may owe its particularly favorable attributes to coastal trapped wave propagation originating in a region of very strong wind-driven offshore trans­ port near the southern extremity of the Indian Subcontinent. Effects of relatively mild austral summer upwelling that occurs in certain coastal ecosystems of the southern hemi­ sphere may be suppressed by the effects of intense onshore transport impacting these areas during the opposite (SW Monsoon) period. An explanation for the extreme paucity of fish landings, as well as for the unusually high production of oceanic (tuna) fisheries relative to coastal fisheries, is sought in the extremely dissipative nature of the physical systems of the region. In this respect, it appears that the Gulf of Aden and some areas within the Mozambique Channel could act as important retention areas and sources of i "see6stock" for maintenance of the function and dillersitv of the lamer reoional biolooical , !I ecosystems. 103 104 large Marine EcosySlIlms ofthe Indian Ocean - . Introduction The western Indian Ocean is the site ofsome of the most dynamically varying-. large marine ecosystems (LMEs) that exist on our planet.
    [Show full text]
  • The Turtle and the Hare: Reef Fish Vs. Pelagic
    Part 5 in a series about inshore fi sh of Hawaii. The 12-part series is a project of the Hawaii Fisheries Local Action Strategy. THE TURTLE AND THE HARE: Surgeonfi sh REEF FISH VS. PELAGIC BY SCOTT RADWAY Tuna Photo: Scott Radway Photo: Reef fi sh and pelagic fi sh live in the same ocean, but lead very different lives. Here’s a breakdown of the differences between the life cycles of the two groups. PELAGIC Pelagic Fish TOPIC Photo: Gilbert van Ryckevorsel Photo: VS. REEF • Can grow up to 30 pounds in fi rst two years • Early sexual maturity WHEN TUNA COME UPON A BIG SCHOOL OF PREY FISH, IT’S FRENETIC. “Tuna can eat up to a quarter • Periodically abundant recruitment of their body weight in one day,” says University of Hawaii professor Charles Birkeland. Feeding activity is some- • Short life times so intense a tuna’s body temperature rises above the water temperature, causing “burns” in the muscle • Live in schools tissue and lowering the market value of the fi sh. • Travel long distances Other oceanic, or pelagic, fi sh, like the skipjack and the mahimahi, feed the same way, searching the ocean for (Hawaii to Philippines) pockets of food fi sh and gorging themselves. • Rapid population turnover On a coral reef, fi sh life is very different. On a reef, it might appear that there are plenty of fi sh for eating, but it is far from the all-you-can-eat buffet Reef Fish pelagic fi sh can fi nd in schooling prey fi sh.
    [Show full text]
  • Sharkcam Fishes a Guide to Nekton at Frying Pan Tower by Erin J
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Information Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 3rd edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2018. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 3rd edition. Los Angeles: Explore.org Ocean Frontiers. 169 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 3.0. 26 January 2018. 2 Table of Contents Identification Images Species Profiles Additional Information Index TABLE OF CONTENTS FOREWORD AND INTRODUCTION.................................................................................. 8 IDENTIFICATION IMAGES .......................................................................................... 11 Sharks and Rays ................................................................................................................................... 11 Table: Relative frequency of occurrence and relative size ....................................................................
    [Show full text]
  • East Java – Bali Power Distribution Strengthening Project
    *OFFICIAL USE ONLY PT PLN (Persero) East Java – Bali Power Distribution Strengthening Project Environmental & Social Management Planning Framework (Version for Disclosure) January 2020 *OFFICIAL USE ONLY BASIC INFORMATION 1. Country and Project Name: Indonesia – East Java & Bali Power Distribution Strengthening Project 2. Project Development Objective: The expansion of the distribution network comprises erection of new poles, cable stringing, and installation of distribution transformers. 3. Expected Project Benefits: Construction of about 17,000 km distribution lines and installation of distribution transformers in East Java and Bali 4. Identified Project Environmental and Social Risks: Social Risks. It is envisaged that this project will require (i) use of no more than 0.2 m2 of land for installation of concrete poles and approximately 4m2 for installation of transformers (either in cabinet of between two concrete poles or on one pole); limited directional drilling (approx. 200-300m) to run cables under major roads and limited trenching (usually less than 500m) in urban environments, and (iii) possible removal of non-land assets (primarily trimming or felling of trees) for stringing of conductors. While restrictions on land use within the existing right of way apply, the land requirements for the distribution network (lines and transformers) are considered manageable with normal mitigation measures. Project activities will not (i) require land acquisition, (ii) cause physical or economic displacement; and/or (ii) result in adverse impacts to Indigenous Peoples groups and/or members of ethnic minorities. Environmental risks are principally induced by the establishment of the network across natural habitats and potential impact on fauna (in particular avifauna and terrestrial fauna susceptible to access the distribution lines or transformers such as monkeys or other tree dwelling scavenging animals that frequent semi urban environments), and the management of waste (e.g.
    [Show full text]