Letter of Intent for a Study of CP Violation in B Meson Decays
Total Page:16
File Type:pdf, Size:1020Kb
KEK—94-2 JI'9501279 KEK Report 94-2 April 1994 H Letter of Intent for A Study of CP Violation in B Meson Decays The BELLE Collaboration NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS © National Laboratory for High Energy Physics, 1994 KEK Reports are available from: Technical Information & Library National Laboratory for High Energy Physics 1-lOho.Tsukuba-shi Ibaraki-ken, 305 JAPAN Phone: 0298-64-1171 Telex: 3652-534 (Domestic) (0)3652-534 (International) Fax: 0298-64-4604 Cable: KEK OHO E-mail: LIBRARY@JPNKEKVX (Bitnet Address) [email protected] (Internet Address) Letter of Intent for A Study of CP Violation in B Meson Decays The BELLE Collaboration February 1994 Submitted to the TRISTAN Program Advisory Committee The BELLE Collaboration M.T. Cheng, M.L. Chu, C.H. Wang Academia Sinica, Nankang, Taipei 11529 Chen K.S., Li J., Zhu Y.C., Wang T.J., Yu Z.Q. Institute of High Energy Physics, Beijing H. Kawai, Chiba University, Chiba 263 S. Matsumoto, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112 N. Katayama, Cornell University, Ithaca, New York 14853 Y. Tamagawa, Fukui University, Fukui 910 A. Breakstone, T. Browder, F. Harris, S. Kanda, S.L. Olsen, K. Ueno University of Hawaii, Honolulu, HI 96822 M. Asai, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-51 K. Abe, I. Adachi, Y. Arai, Y. Doi, R. Enomoto, H. Fujii, Y. Fujita, M. Fukushima, T. Haruyama, K. Hayashi, Y. Higashi, H. Ikeda, M. Ikeda, R. Itoh, M. Iwai, J. Kanzaki, M. Kawai, H. Kichimi, T. Kobayashi, S. Koike, Y. Kondo, Y. Kuno, Y. Makita, T. Matsuda, M. Nomachi, T. Nozaki, K. Ogawa, R. Ookubo, H. Ozaki, H. Sagawa, M. Saito, Y. Sakai, 0. Sasaki, T. Sasaki, N. Sato, T. Sumiyoshi, F. Takasaki, K. Tamai, M. Tanaka, T. Tsuboyama, K. Tsukada, T. Tsukamoto, S. Uehara, N. Ujiie, S. Uno, M. Wake, Y. Yamada, H. Yamaguchi, H. Yamaoka, M. Yamauchi, Y. Yoshimura KEK, Tsukuba 305 J.S. Kang, Korea University, Seoul 136-701 R. Kajikawa, A. Sugiyama, S. Suzuki, T. Yamaki Nagoya University, Chikusa-ku, Nagoya 464 N. Fujiwara, H. Hayashii, S. Noguchi Nara Women's University, Kita-Uoya Nishi-Machi, Nara 630 Y.H. Chang, Taiwan National Central University, Chungli, 32054 W.S. Hou, National Taiwan University, Taipei 10764 M. Miyata, K. Miyano, Niigata University, S050, Ninomachi, Niigata 950-21 Y. Yamashita, Nippon Denial College, 1-8, Hamaura-cho, Niigata 951 A. Bondar, S. Eidelman, B. Shwartz Institute of Nuclear Physics, Novosivirsk, 630090 N. Tamura, Okayama University, 3-1-1, Tsushima-Naka, Okayama 700 2 J. Haba, Y. Nagashima, M. Takita, T. Yamanaka Osaka University, Toyonaka, Osaka 560 T. Takahashi, Y. Teramoto Osaka City University, Sumiyoshi-ku, Osaka 558 P.P Denes, M.M. Ito, C. Lu, D.R. Marlow, P.D. Meyers, E.J. Prebys, P.L. Wixted Princeton University, Princeton, NJ 08544 S. Kobayashi, A. Murakami, Saga University, ffonjo, Saga 840 H.F. Chen, C. Li, C.R. Wang, X.L. Wang, Z.M. Wang, Z.Z. Xu, Z.P. Zhang University of Science and Technology of China, Hefei, Anhui T. Korhonen, SEFT, Research for High Energy Physics, Helsinki S.K. Kim, M.H. Lee, S.S. Myung Seoul National University, Seoul, 151-742 S. Ogawa, H. Shibuya, Toho University, Funabashi, Chiba 274 K. Abe, T. Nagamine, A. Yamaguchi, H. Yuta Tohoku University, Sendai, Miyagi 980 M. Higuchi, Y. Hoshi, M. Sato Tohoku Gakuin University, Tagajo, Miyagi 985 T. Kamae, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 K. Kaneyuki, T. Tanimori, Y. Watanabe Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152 C. Fukunaga, T. Hirose, Tokyo Metropolitan University, Hachioji, Tokyo 192-03 0. Nitoh, K. Takahashi Tokyo University of Agriculture and Technology, Koganei, Tokyo 184 Y. Asano, S. Mori, University of Tsukuba, Tsukuba 305 A. Abashian, K. Gotow, D. Haim, N. Morgan, L. E. Piilonen Virginia Polytechnic Institute, Blacksburg, VA 24061 Spokespersons of the BELLE Collaboration S. Suzuki, Nagoya University, ([email protected]) S. L. Olsen, University of Hawaii, ([email protected]) F. Takasaki, KEK, ([email protected]) 3 Contents 1 Introduction 8 2 Goals of this Experiment 10 2.1 The Unitarity Triangle 11 2.1.1 The KM Matrix 11 2.1.2 Current Knowledge of the KM Matrix Elements 12 2.1.3 Determination of the Unitarity Triangle Angles 13 2.1.4 Determination of the Sides of Unitarity Triangle 18 2.2 CP Violation Beyond The Standard Model 20 2.2.1 Supersymmetry (SUSY) 20 2.2.2 Multiple Higgs Doublets 20 2.2.3 Left-Right Symmetric Models 21 2.2.4 Superweak Model 21 2.3 Other B Physics Possibilities 22 2.3.1 Rare Hadronic Decays 22 2.3.2 Experimental Constraints on the b —* 57 Inclusive Rate 23 2.3.3 b-*s£+£- Decays 24 2.3.4 6 -» svv Decays 25 2.3.5 B Decays to Two Leptons 25 2.3.6 B —•> rv, B —»fiu, and B —> ev 26 2.4 Non-5 Physics Possibilities 27 2.4.1 Charm Physics 27 2.4.2 r Physics 28 3 Detector Requirements and Optimization 29 3.1 Vertex Detection Requirements 30 3.2 Tracking Requirements 31 3.3 Requirements for Electromagnetic Calorimetry 34 3.4 Particle Identification 35 4 3.5 KL and Muon Detection 36 3.6 Reference Design 37 4 Accelerator-Detector Interface 42 4.1 Interaction Region Design 42 4.2 Backgrounds 43 4.2.1 Synchrotron Radiation 44 4.2.2 Spent Electrons 45 5 Reference Design Description 47 5.1 Beampipe 47 5.2 Silicon Vertex Detector 49 5.2.1 Configuration of Silicon Vertex Detector 49 5.2.2 Expected Performance 51 5.2.3 S/N Ratio of the 2-strip Readout 53 5.2.4 Readout Electronics 54 5.3 Charged Particle Tracking 58 5.3.1 PDC 58 5.3.2 CDC 59 5.3.3 Readout Electronics 62 5.3.4 Track Reconstruction 63 5.4 Particle Identification 67 5.4.1 Ring Imaging Cerenkov Detector (RICH) 67 5.4.2 Aerogel Cherenkov Counter 69 5.5 Time of Flight System 73 5.5.1 TOF and TSC configuration 73 5.5.2 Monte Carlo studies of the TSC design 75 5.5.3 Test results of prototype TOF counters 76 5.5.4 Readout electronics and related items 78 5.6 CsI(T^) Calorimeter 81 5.6.1 Overall Design 81 5.6.2 CsI(T^) Readout System 83 5.6.3 Electronics 86 5.6.4 Mechanical Structure 88 5.6.5 Calibration 89 5.6.6 Measurement of Luminosity 89 5.6.7 Beam Test 90 5.6.8 Monte Carlo Simulation 91 5 5.6.9 Beam Background 95 5.6.10 Radiation Hardness 98 5.6.11 Options 99 5.6.12 Production of CsI(T^) Crystals 99 5.7 VENUS Solenoid Upgrade 100 5.8 KL Detector 105 5.8.1 Configuration 105 5.8.2 Charged Particle Detection 105 5.8.3 Physics Performance 110 5.8.4 Continuing Studies 112 5.9 Muon Detector 114 5.10 Trigger 117 5.10.1 Rates and Requirements 117 5.10.2 General Scheme 117 5.10.3 Track Triggers 119 5.10.4 Calorimeter Trigger 120 5.11 Data Acquisition System 123 5.11.1 Subsystem 123 5.11.2 Sequence Control 125 5.11.3 Digitizers 125 5.11.4 Event Builder 126 5.11.5 Online Computer Farm 127 5.11.6 Other Subsystems 128 5.12 Computing 130 5.12.1 Computing Environment 130 5.12.2 Offline Computer Farm 131 5.12.3 Data Server 132 5.12.4 Network inside KEK 133 5.12.5 Computing outside KEK 134 5.12.6 Software 136 6 Physics Simulation 139 6.1 Event Generation 139 6.2 Fast Simulator 141 6.2.1 Charged Particle Tracking 141 6.2.2 7 Detection 143 6.2.3 KL Detection 143 6.2.4 Particle Identification 143 6 6.3 (j>i Measurements 146 6.3.1 B° -.- J/i>Ks (-» ^-TT+TT-) 146 6.3.2 B° -» J/V'tfs (-» rrvrV) 148 6.3.3 B° -» J/V'ii'i 150 6.3.4 B° - JIJJK" 151 6.4 (j>2 Measurements 160 6.4.1 B° -+ 5T + 7T- 160 6.4.2 5° -• p±^ 162 6.5 4>z Measurements 167 6.5.1 B° -+ D°KS 168 6.5.2 B± -> D0^ 170 6.6 \Vcb\ 172 6.6.1 Slow x* Detection 172 6.6.2 Slow 7T° Detection 173 6.6.3 Other Methods for Determining \Vcb\ 173 6.7 \Vub/Vcl,\ 175 6.8 \V«,/Vt.\ 178 6.9 Summary of the Simulation Results 181 7 Cost, Schedule, and Organization 187 7.1 Schedule and Organization 187 7.2 Schedule 187 7.3 Organization 188 7.4 Responsibility Distribution 190 7 Chapter 1 Introduction A major unresolved issue in our understanding of the Universe is how the current Universe, which is composed entirely of matter, evolved from the matter-antimatter symmetric Big Bang. The laws of nature have a high degree of symmetry between matter and antimatter; violations of this symmetry—the so-called CP violations— are only seen as a small effect in the decays of neutral K mesons. Apparently, these CP-violating effects have played a key role in the development of the Universe. Although experimental evidence for CP violation was first observed 30 years ago, we still do not understand how it occurs. In a remarkable paper published in 1973, Kobayashi and Maskawa (KM) noted that CP violation could be accommodated in the Standard Model only if there were at least six quark flavors, twice the number of quark flavors known at that time [1].