State of Fisheries Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Silver Trevally (Pseudocaranx Georgianus)
I & I NSW WILD FISHERIES RESEARCH PROGRAM Silver Trevally (Pseudocaranx georgianus) EXPLOITATION STATUS GROWTH OVERFISHED Minimum legal length (MLL) of 30 cm total length was implemented in September 2007 but recent size composition data indicate silver trevally should still be considered ‘growth overfished’. Status should be reviewed after the impact of the MLL implementation has been fully assessed. SCIENTIFIC NAME STANDARD NAME COMMENT Pseudocaranx georgianus silver trevally Was recently known as P. dentex. Pseudocaranx georgianus Image © Bernard Yau Background samples from Botany Bay between December and August, however the life history of juvenile Recent research determined that the silver trevally is poorly known. trevally in south-eastern Australian and northern New Zealand waters is distinct from Silver trevally is a relatively long lived, slow the larger tropical form (Pseudocaranx dentex) growing species, attaining a maximum age and the old name (P. georgianus) has been in excess of 25 years. In NSW coastal waters restored. Silver trevally occur in estuarine and trevally reach a maximum size of about coastal waters of southern Australian states 65 cm FL and weight of about 4 kg. Since the ranging from about Coffs Harbour in NSW 1980s, the average size of silver trevally in to about Perth in WA. Most of the Australian catches has declined considerably and in recent commercial catch is taken in NSW and eastern years fish greater than about 35 cm in length Victoria. Silver trevally is a schooling species, (or 0.75 kg in weight) have been very poorly inhabiting mainly sandy substrates and feeding represented in catches. Commercial catches are on benthic invertebrates, including worms and dominated by young fish, less than about five molluscs, and also on benthic and planktonic years of age. -
Sample Assessment Tasks
SAMPLE ASSESSMENT TASKS MARINE AND MARITIME STUDIES GENERAL YEAR 11 Copyright © School Curriculum and Standards Authority, 2014 This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority’s moral rights are not infringed. Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners. Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International licence. Disclaimer Any resources such as texts, websites and so on that may be referred to in this document are provided as examples of resources that teachers can use to support their learning programs. Their inclusion does not imply that they are mandatory or that they are the only resources relevant to the course. 2014/18740v5 1 Sample assessment task Marine and Maritime Studies – General Year 11 Task 3 — Unit 1 Assessment type: Extended response Conditions Period allowed for completion of the task – three weeks; a combination of in-class and out-of-class time Task weighting: 2.5% of the school mark for this pair of units __________________________________________________________________________________ Marine resource management research (25 marks) Background Commercial fishing is an important contributor to the Western Australian economy. -
The Biology and Ecology of Samson Fish Seriola Hippos
The biology of Samson Fish Seriola hippos with emphasis on the sportfishery in Western Australia. By Andrew Jay Rowland This thesis is presented for the degree of Doctor of Philosophy at Murdoch University 2009 DECLARATION I declare that the information contained in this thesis is the result of my own research unless otherwise cited. ……………………………………………………. Andrew Jay Rowland 2 Abstract This thesis had two overriding aims. The first was to describe the biology of Samson Fish Seriola hippos and therefore extend the knowledge and understanding of the genus Seriola. The second was to uses these data to develop strategies to better manage the fishery and, if appropriate, develop catch-and-release protocols for the S. hippos sportfishery. Trends exhibited by marginal increment analysis in the opaque zones of sectioned S. hippos otoliths, together with an otolith of a recaptured calcein injected fish, demonstrated that these opaque zones represent annual features. Thus, as with some other members of the genus, the number of opaque zones in sectioned otoliths of S. hippos are appropriate for determining age and growth parameters of this species. Seriola hippos displayed similar growth trajectories to other members of the genus. Early growth in S. hippos is rapid with this species reaching minimum legal length for retention (MML) of 600mm TL within the second year of life. After the first 5 years of life growth rates of each sex differ, with females growing faster and reaching a larger size at age than males. Thus, by 10, 15 and 20 years of age, the predicted fork lengths (and weights) for females were 1088 (17 kg), 1221 (24 kg) and 1311 mm (30 kg), respectively, compared with 1035 (15 kg), 1124 (19 kg) and 1167 mm (21 kg), respectively for males. -
Are Signals of Prey Variability Present in the Demographic Characteristics of Crested Tern (Sterna Bergii) Populations in South Australia?
Are signals of prey variability present in the demographic characteristics of crested tern (Sterna bergii) populations in South Australia? Final Report to the South Australian Wildlife Conservation Fund Project No 0256 Authors: L.J. McLeay1,2, *, B. Page1, S.D. Goldsworthy1 and T.M. Ward1 1 South Australian Research and Development Institute, Aquatic Sciences, 2 Hamra avenue West Beach. PO Box 120, Henley Beach, South Australia 5022, Australia. 2 The University of Adelaide, School of Earth and Environmental Sciences, Adelaide, South Australia 5005, Australia. Correspondence to L.J. McLeay: tel: +61 08 8207 5439; fax: +61 08 8207 5406; Email: [email protected] SARDI Aquatic Sciences Publication No. F2008/000964 SARDI Research Report Series No. 312 Disclaimer The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI Aquatic Sciences internal review process, and has been formally approved for release by the Chief Scientist. Although all reasonable efforts have been made to ensure quality, SARDI Aquatic Sciences does not warrant that the information in this report is free from errors or omissions. SARDI Aquatic Sciences does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. © 2008 SARDI AQUATIC SCIENCES This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the author. Authors: L.J. McLeay, B. Page, S.D. Goldsworthy and T.M. Ward Reviewers: Mr P. -
New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E. -
In South Australia – Stock Structure and Adult Movement
SPATIAL MANAGEMENT OF SOUTHERN GARFISH (HYPORHAMPHUS MELANOCHIR) IN SOUTH AUSTRALIA – STOCK STRUCTURE AND ADULT MOVEMENT MA Steer, AJ Fowler, and BM Gillanders (Editors). Final Report for the Fisheries Research and Development Corporation FRDC Project No. 2007/029 SARDI Aquatic Sciences Publication No. F2009/000018-1 SARDI Research Report Series No. 333 ISBN 9781921563089 October 2009 i Title: Spatial management of southern garfish (Hyporhamphus melanochir) in South Australia – stock structure and adult movement Editors: MA Steer, AJ Fowler, and BM Gillanders. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC. © 2009 Fisheries Research and Development Corporation and SARDI Aquatic Sciences. This work is copyright. Apart from any use as permitted under the Copyright Act 1968 (Cwth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. -
Appendices Appendices
APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J. -
Table of Fishes of Sydney Harbour 2019
Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale -
Atlantic Herring (Clupea Harengus) in the Irish and Celtic Seas; Tracing Populations of the Past and Present
Atlantic herring (Clupea harengus) in the Irish and Celtic Seas; tracing populations of the past and present Nóirín D. Burke A thesis submitted to the School of Science, Galway Mayo Institute of Technology in fulfilment for the degree of Doctor of Philosophy Department of Life and Physical Sciences June 2008 Head of Department: Dr Seamus Lennon Supervisors: Dr Deirdre Brophy Dr Pauline A. King Galway-Mayo Institute of Technology, Dublin Rd., Galway, Ireland TABLE OF CONTENTS Chapter 1: General Introduction……………………………………………........... 10 1.1 Herring biology and population structure………………………. 10 1.2 Herring fisheries around Ireland………………………………... 12 1.3 Stock structure of Celtic and Irish Sea herring………………….. 14 1.4 Herring assessments in the Irish and Celtic Seas……………….. 15 1.5 Otolith applications in fisheries science………………………… 16 1.6 Otolith microstructure……………...……………………………. 17 1.7 Otolith morphometrics and shape analysis……………………… 18 1.8 Summary of objectives………………………………………….. 19 Chapter 2: Shape analysis of otolith annuli in Atlantic herring (Clupea harengus); a new method for tracking fish populations………………………….. 23 2.1 Abstract………………………………………………………….. 23 2.2 Introduction……………………………………………………… 23 2.3 Methods………………………………………………………….. 26 2.4 Results…………………………………………………………… 32 2.5 Discussion……………………………………………………….. 33 2.6 Conclusion……………………………………………………….. 40 Chapter 3: Otolith shape analysis, its applications to distinguishing between Irish and Celtic Sea herring (Clupea harengus) stocks in the Irish Sea……………….. 49 3.1 Abstract………………………………………………………….. 49 3.2 Introduction……………………………………………………… 49 3.3 Methods…………………………………………………………. 51 3.4 Results…………………………………………………………… 54 3.5 Discussion……………………………………………………….. 55 3.6 Conclusion……………………………………………………….. 57 Chapter 4: Otolith shape analysis provides evidence of natal homing in Atlantic herring (Clupea harengus)………………………………………………………… 62 4.1 Abstract………………………………………………………….. 62 4.2 Introduction……………………………………………………… 62 4.3 Methods…………………………………………………………. -
Biology, Stock Status and Management Summaries for Selected Fish Species in South-Western Australia
Fisheries Research Report No. 242, 2013 Biology, stock status and management summaries for selected fish species in south-western Australia Claire B. Smallwood, S. Alex Hesp and Lynnath E. Beckley Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Smallwood, C. B.; Hesp, S. A.; and Beckley, L. E. 2013. Biology, stock status and management summaries for selected fish species in south-western Australia. Fisheries Research Report No. 242. Department of Fisheries, Western Australia. 180pp. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Fisheries Western Australia. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Department of Fisheries Western Australia does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Fish illustrations Illustrations © R. Swainston / www.anima.net.au We dedicate this guide to the memory of our friend and colleague, Ben Chuwen Department of Fisheries 3rd floor SGIO Atrium 168 – 170 St Georges Terrace PERTH WA 6000 Telephone: (08) 9482 7333 Facsimile: (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 Published by Department of Fisheries, Perth, Western Australia. Fisheries Research Report No. 242, March 2013. ISSN: 1035 - 4549 ISBN: 978-1-921845-56-7 ii Fisheries Research Report No.242, 2013 Contents ACKNOWLEDGEMENTS ............................................................................................... -
Landcorp Denmark East Development Precinct Flora and Fauna Survey
LandCorp Denmark East Development Precinct Flora and Fauna Survey October 2016 Executive summary Introduction Through the Royalties for Regions “Growing our South” initiative, the Shire of Denmark has received funding to provide a second crossing of the Denmark River, to upgrade approximately 6.5 km of local roads and to support the delivery of an industrial estate adjacent to McIntosh Road. GHD Pty Ltd (GHD) was commissioned by LandCorp to undertake a biological assessment of the project survey area. The purpose of the assessment was to identify and describe flora, vegetation and fauna within the survey area. The outcomes of the assessment will be used in the environmental assessment and approvals process and will identify the possible need for, and scope of, further field investigations will inform environmental impact assessment of the road upgrades. The survey area is approximately 68.5 ha in area and includes a broad area of land between Scotsdale Road and the Denmark River and the road reserve and adjacent land along East River Road and McIntosh Road between the Denmark Mt Barker Road and South Western Highway. A 200 m section north and south along the Denmark Mt Barker Road from East River Road was also surveyed. The biological assessment involved a desktop review and three separate field surveys, including a winter flora and fauna survey, spring flora and fauna survey and spring nocturnal fauna survey. Fauna surveys also included the use of movement sensitive cameras in key locations. Key biological aspects The key biological aspects and constraints identified for the survey area are summarised in the following table. -
Australian Herring
PUBLISHED MARCH 2015 FISHERIES AUSTRALIAN HERRING FACT SHEET Australian herring Arripis georgianus Australian herring A staple fish for recreational fishers in the south of the State, and historically for commercial fisheries, Australian herring is a popular species with a life cycle dependent on prevailing currents. Family likeness Identifying Australian herring and Although named after their superficial resemblance to the herring found in the juvenile Australian salmon Northern Hemisphere, Australian herring Juvenile Australian salmon are actually a member of the perch family (Arripis truttaceus) (family Arripidae) rather than a true herring are silvery white, (family Clupeidae). smooth scaled, Sometimes known as a ‘tommy ruff’ in South have a yellow pectoral Australia and Victoria, Australian herring fin and have several rows Adult Australian salmon is now the standard adopted name for the of golden or brown spots species throughout its entire distribution. on their backs and sides. There are four members of the Arripidae Australian herring (Arripis family, including the western Australian georgianus) are silvery in salmon (Arripis truttaceus), which in its colour with vertical rows of juvenile stage can be easily confused with golden spots on the upper adult herring. side of the body and black tips to the caudal (tail) fin. Juvenile Australian salmon Herring have been reported to grow to a The scales on the body are maximum length of 41 centimetres but slightly rough in texture. are generally caught at a length of around 20-25 centimetres. Larger adults are often Australian herring have referred to as ‘bull’ herring. a larger eye and more rounded head than Australian herring typically reach sexual maturity juvenile Australian salmon.