The Roles of Sodium Nitroprusside, Salicylic Acid, and Methyl Jasmonate

Total Page:16

File Type:pdf, Size:1020Kb

The Roles of Sodium Nitroprusside, Salicylic Acid, and Methyl Jasmonate Adv. Hort. Sci., 2019 33(2): 187-195 DOI: 10.13128/ahs-24261 The roles of sodium nitroprusside, salicylic acid, and methyl jasmonate as Advances inH HorticulturaS l Science hold solutions on vase life of Gerbera jamesonii ‘Sun Spot’ E. Hemati, M.R. Salehi Salmi (*), M.H. Daneshvar, M. Heidari Department of Horticultural Science, Agricultural Sciences and Natural Resources University of Khuzestan, Khuzestan, Iran. Keywords: antioxidant enzyme, ethylene, plant growth regulator, post-harvest, sugar. Abstract: The present study investigates the roles of nitroprusside (SNP), sali - cylic acid (SA), methyl jasmonate (MJ), and their interaction with 8-hydrox - yquinoline sulfate (8-HQS) in regulating the peroxidase activity (POX), water uptake, the relative water content (RWC), the contents of malondialdehyde (*) Corresponding author: [email protected] (MDA), soluble sugar, proline, and protein content in the petals and the stem bending of Gerbera jamesonii ‘Sun Spot’ cut flowers. Cut flowers were treated with various concentrations (50, 100, and 200 µM) of hold-solutions containing 8-HQS, SA, MJ, and SNP. Hold solutions were used alone or in combination with Citation: HEMATI E., SALEHI SALMI M.R., DANESHVAR 100 µM 8-HQS for 24 h. Distilled water was used as control and sucrose (4%, M.H., HEIDARI M., 2019 - The roles of sodium w/v) was added to all solutions. The findings showed that 50 µM SA+ 100 µM 8- nitroprusside, salicylic acid, and methyl jasmona - HQS markedly improved the RWC, the contents of proline, anthocyanin, te as hold solutions on vase life of Gerbera jame - carotenoid, protein, and soluble sugar, and activities of POX in the petals and sonii ‘Sun Spot ’. - Adv. Hort. Sci., 33(2): 187-195 markedly reduced water loss and the contents of MDA in the petals, compared with other treatments, especially the control. Meanwhile, the combination of Copyright: plant growth regulators (PGR) with 8-HQS markedly improved positive indexes © 2019 Hemati E., Salehi Salmi M.R., Daneshvar than use alone PGR. This phenomenon seemed to be due to more absorption of M.H., Heidari M. This is an open access, peer reviewed article published by Firenze University PGR. Among different concentrations of PGR, 50 μM is the most effective treat - Press (http://www.fupress.net/index.php/ahs/) ment for the improvement of the vase life of Gerbera jamesonii cut flowers. and distributed under the terms of the Creative The results also demonstrated that SA+8-HQS improves the vase life of gerbera Commons Attribution License , which permits cut flowers by enhancing the membrane stability and water retaining capacity unrestricted use, distribution, and reproduction in any medium, provided the original author and as well as increasing proline, antioxidant activity, and pigment contents. source are credited. Data Availability Statement: 1. Introduction All relevant data are within the paper and its Supporting Information files. Vase life and quality are key factors that contribute to the aesthetic and benefits of cut flowers (Mansouri, 2012). The short vase life of most Competing Interests: cut flowers is mainly due to the water loss, which is an important physio - The authors declare no competing interests. logical process that affects the main quality characteristics of cut flowers, such as appearance (Salehi Salmi et al ., 2018). Received for publication 29 November 2018 Gerbera jamesonii is a commercially popular cut flower that ranks 10 Accepted for publication 15 February 2019 in the globe auctions. This plant is a member of the family asteraceae that 187 Adv. Hort. Sci., 2019 33(2): 187-195 originates from Africa and Madagascar and extends genus, and mycoplasma (Chupakhina et al ., 2012). In to China (Parthasarathy and Nagaraju, 1999; Hind, previous studies, 8-hydroxyquinoline sulfate (8-HQS) 2007). Sensitivity to microbial contamination at the remarkably increased vase life of rose cut flowers stem base is a major postharvest problem of this (Ichimura et al ., 1999). plant (Balestra et al ., 2005). Microorganisms cause In the present study, the role of three plant stem end blockage in cut flower (He et al ., 2006; Liu growth regulators (i.e., SNP, MJ, and SA) in regulating et al ., 2009) and also secretion of toxic compounds, the activities of the antioxidant enzyme, relative and thereby accelerated wilting (Williamson et al ., water content (RWC), water uptake, the contents of 2002). Vase life of gerbera has been studied exten - malondialdehyde (MDA), protein, pigments and solu - sively with different treatments (Nair et al ., 2003; ble sugar in the petals, and time of stem bending of Solgi et al ., 2009; Shabanian et al ., 2018). Witte et al. gerbera cut flowers were investigated. The objective (2014) reported that treating cultivars of gerbera of the present study is to provide a theoretical basis stems by sucrose in combination with an antimicro - for the application and optimization dosage of plant bial compound (HQC, Chlorine) resulted in less bend - growth regulators in combination with an antimicro - ing than the same concentration of the antimicrobial bial compound, i.e., 8-HQS, in improving the vase life compounds alone. Perik et al. (2014) noted that of gerbera cut flowers during the vase-holding other factors might also be involved in bending and period. showed that a mixture of chemicals delayed the time to bending in six tested cultivars of gerbera. Sodium nitroprusside (SNP), the inorganic nitrous 2. Materials and Methods compound (nitroferricyanide) with the formula Na [Fe(CN) NO].2H O, is an important signaling mol - 2 5 2 Plant material and treatment ecule. This molecule has diverse physiological func - ‘Sun Spot’ cut-gerberas ( Gerbera jamesonii ), har - tions for plants such as inducing tolerance to adverse vested at normal harvest maturity, were obtained environmental factors (Shi et al ., 2016; Kumar Rai et from a commercial grower (Dezfol, Khuzestan, Iran). al ., 2018). Application of SNP in vase solution result - The length of the stem varied between 65 and 70 cm. ed in extending the vase life of gerbera cut flowers The harvested flowers were packed into parchment (Shabanian et al ., 2018); however, there is very limit - paper and transported to the laboratory within 1-2 h. ed information regarding the positive effects of Then, stems were re-cut to a uniform length of 55, exogenously applied SNP in extending the vase life. under distilled water to avoid air embolism. Each six- Ortho-hydroxybenzoic acid or salicylic acid is an flower sample was placed randomly in 250 mL of var - endogenous plant growth regulator. Exogenous ious concentrations (50, 100, and 200 µM) of hold- application of salicylic acid (SA) can affect the antioxi - solutions containing 8-HQS, SA, MJ, and SNP. Hold dant capacity of plant cells and prolong vase life of solutions were used alone or in combination with cut flowers, such as rose (Alaey et al ., 2011) and 100 µM 8-HQS for 24 h. Distilled water was used as anthurium (Promyou et al ., 2012). However, little control and sucrose (4%, w/v) was added to all solu - work has been reported on the role of SA on cut tions. To maintain the proper concentrations of hold- flower vase-life improvement and physio-chemical solutions, the mouths of the vases were covered with attributes related to senescence. plastic wrap (around the stem) to minimize evapora - Methyl Jasmonate (MJ) has been found as a natu - tion and to prevent contamination. Then, flowers rally occurring substance in higher plants. In this con - were individually sited in glass bottles of 25 cm text, the application of MJ induced antioxidant sys - height, approximately 150 ml of distilled water in tem activity can suppress fungal infection and each bottle, under laboratory condition. The labora - enhance stress resistance (Kanani and Nazarideljou, tory was maintained at 22°C, 60±5% relative humidi - 2017). To our knowledge, MJ effects on specific phys - ty, and 16 mmol m -2 s-1 photons irradiance using cool iological and biochemical processes in gerbera cut fluorescent lamps for a 12 h photoperiod (07:00- flower have not been studied yet. 19:00 h). As a derivative of 8-hydroxyquinolines, 8-hydrox - yquinoline sulfate is widely used as antibacterial Measurements since the beginning of the 1950s. This compound is - Time of stem bending was determined as described active against gram-negative bacteria of the by Perik et al . (2012). Enterobacteriaceae family, fungi of the Candida - Relative fresh weight (RFW) was calculated by the 188 Hemati et al. - Plant growth regulators as hold solutions of cut-flower Gerbera following formula: was no significant difference in the stem bending of RFW (%) = [(FW -FW )/ FW ] ×100 flowers among different concentrations of SNP. t=10 t=0 t=0 Among various concentrations of 8-HQS, stem bend - where FW t=10 is the fresh weight of flower (g) at 10th ing of cut flowers treated by 100 μM 8-HQS was sig - day and FW t=0 is the fresh weight of the same flower nificantly lower than those treated by other concen - (g) at first day (He et al ., 2006). trations. Compared with control, 50, 100, and 200 - Water uptake (mL) was calculated by subtracting in μM 8-HQS increased the vase life by 69%, 100%, and the weight of the remaining water at the end of the 78%, respectively. Different concentrations of MJ all experiment from the initial weight. significantly increased vase life, compared with the - Soluble carbohydrate content in petals was mea - control (Fig. 1). However, MJ treatments were less sured by the anthrone colorimetric method accord - effective on vase life compared with 8-HQS, SA, and ing to the method of Xue (1985). SNP treatments. - Total anthocyanin content of petal was measured by the pH differential method of Yang et al . (2009). - Total carotenoid content of gerbera petal tissue was estimated using the method of Wellburn (1994).
Recommended publications
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Genetic Variability and Heritability Studies in Gerbera Jamesonii Bolus
    Vol. 8(41), pp. 5090-5092, 24 October, 2013 DOI: 10.5897/AJAR2013.8038 African Journal of Agricultural ISSN 1991-637X ©2013 Academic Journals Research http://www.academicjournals.org/AJAR Short Communication Genetic variability and heritability studies in Gerbera jamesonii Bolus A. K. Senapati1, Priyanka Prajapati2* and Alka Singh2 1Department of Post Harvest Technology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari - 396450, Gujarat, India. 2Department of Floriculture and Landscape Architecture, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari - 396450, Gujarat, India. Accepted 15 October, 2013 Twelve genotypes of gerbera (Gerbera jamesonii) were evaluated to determine the genetic variability, heritability, genetic advance, and genetic advance as percent of mean for 13 contributing characters. Significant variations were recorded for the various characters studied. Phenotypic and genotypic coefficients of variation were highest for the number of leaves per plant, number of clumps per plant and leaf area index, indicating presence of sufficient genetic variability for selection in these traits. High heritability and high genetic advance for number of leaves per plant, leaf area index and fresh weight indicated the presence of additive gene effects in these traits and their amicability for direct selection. The non additive gene effects were evident in petal thickness, hollowness of the stalk, fresh weight, flower diameter, stalk diameter and neck diameter thus, warranting use of heterosis breeding for these characters. The selection on the basis of number of leaves per plant, number of clumps per plant and leaf area index will be more effective for further breeding programme. Key words: Gerbera, heritability, variability, genetic advance, phenotypic and genotypic coefficients of variation.
    [Show full text]
  • Abnormal Pattern Formation in Vegetative and Floral Development in Polyhouse Gerbera Cultivation
    Res. Jr. of Agril. Sci. 12(2): 607–611 Research Journal of Agricultural Sciences An International Journal P- ISSN: 0976-1675 E- ISSN: 2249-4538 www.rjas.org Research Paper Abnormal Pattern Formation in Vegetative and Floral Development in Polyhouse Gerbera Cultivation A. S. Kadam*1 and D. D. Namdas2 Received: 28 Nov 2020 | Revised accepted: 02 Apr 2021 | Published online: 05 Apr 2021 © CARAS (Centre for Advanced Research in Agricultural Sciences) 2021 A B S T R A C T Numerous unusual advancements in plant part (vegetative and regenerative) or alterations in the structure of an organ of plants referred as abnormality. Relatively few cases of abnormalities in Gerbera jamesonii of greenhouse cultivation have received attention in the literature. The cases reported are scattered over a period and no detailed historical study has apparently been made nor listed collectively. Some extra efforts regarding enhancement of yield leads to some physiological disorders. Also, insect attack, edaphic and uncontrolled environmental factors may destroy the quality and vigour of plant exhibiting abnormalities. This Paper describes abnormalities observed in commercial floriculture plots during study period. Key words: Gerbera jamesonii, Phyllody, Greenhouse, Vegetative abnormality, Reproductive abnormality Gerbera (Gerbera jamesonii Bolus ex Hook) is the among varieties. Gerbera flowers also possess hairy pappus. most recent profitable trade to Indian Floriculture, industrially The stamens of Gerbera florets are aborted in marginal developed all through the world in a wide extent of climatic flowers, the petals and anthers are fused into tubular structures conditions [1]. Gerbera, commonly known as Transvaal Daisy, and the plant possesses inferior ovaries.
    [Show full text]
  • Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
    Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence.
    [Show full text]
  • Rapid Plant Regeneration from Gerbera Jamesonii Bolus Callus Cultures
    Acta Bot. Croat. 61 (2), 125–134, 2002 CODEN: ABCRA25 ISSN 0365–0588 Rapid plant regeneration from Gerbera jamesonii Bolus callus cultures CHENNA REDDY ASWATH*, MEWA LAL CHOUDHARY Division of Ornamental Crops, Indian Institute of Horticultural Research, Bangalore 560089, India A high frequency shoot organogenesis and plant establishment protocol has been devel- oped for Gerbera jamesonii from ex vitro leaf derived callus. The optimal callus was de- veloped on Murashige and Skoog (MS) basal medium supplemented with 0.4 mg L–1 6-benzylaminopurine (BAP), 4.0 mg L–1 a-naphthalene acetic acid (NAA) and 3% (w/v) sucrose. Two callus types differing in their structures and growth rates were observed. A friable and non-chlorophyllous callus with high growth rate appeared at the cut surfaces of the explant, and a compact chlorophyllous callus. The rate of shoot bud regeneration was positively correlated with the concentration of growth regulators in the nutrient media. The explants were highly responsive (83.3%) in a medium containing 2 mg L–1 NAA and 1mgL–1 BAP after 3 weeks of callus transfer to a medium. Regenerated plantlets were transferred to soil where they grew normally with a survival rate of 95%. This protocol of- fers rapid build up of selected clones and opens up prospects for using biotechnological approaches for gerbera improvement. Key words: 6-benzylaminopurine, compact callus, leaves, friable callus, Gerbera jame- sonii, alpha-naphthalene acetic acid, organogenesis Introduction The gerbera (Gerbera jamesonii) is a valuable ornamental species grown as a potted plant and for cut flowers. Because genetic variability within the Gerbera genus is limited, the breeding potential for new flower colors and patterns such as resistance to biotic or abiotic stresses is also limited.
    [Show full text]
  • Gerbera Production Tutorial
    Gerbera Production Tutorial June 2019 History of Gerbera • Native to South Africa • Classified in 1737 and named after Botanist Traugott Gerber. • Robert Jameson, a Scottish businessman, took interest in the plant and sent samples to England. • The head botanist at Kew Gardens named the species after Mr. Jameson, Gerbera jamesonii. • Beginning around 1890, work began in England on development of the modern gerbera. 2 Seed Storage Seed Germination and Storage: • Gerbera seed are large (7,100 seeds per ounce/250 per gram) compared to many other bedding plant species that we grow. Seed can be stored up to 12 months at 41ºF/5ºC if the seed is kept at 4.5-5.7% moisture content and a 32% relative humidity is maintained. 3 Seed Handling • Remove from storage only the seed that you plan to sow within 4 hours. • For seed returned to the seed storage area, leave the packet open overnight to equalize the humidity levels and prevent condensation from forming inside the packet. 4 Media • Provide a media with good aeration for optimal nutrient uptake. • Select a plug media that is highly aerated. Mixes made with long fiber peat provide excellent structure and nutrient uptake. Alternatively, use a media with a higher aggregate content (perlite). • Provide an environment that promotes high leaf transpiration. 5 200 plug cell • 5 week old gerbera plugs. • Long fiber peat yields more usable plugs. • Long fiber peat eliminates stunted and deformed seedlings. • Ideal for mini types that are more sensitive to excess moisture. Long fiber seedling mix – Peat lite plug mix 6 128 plug cell • 8 week old gerbera plugs.
    [Show full text]
  • (Gerbera Jamesonii) Ovisno O Načinu Uzgoja
    Navodnjavanje gerbera (Gerbera jamesonii) ovisno o načinu uzgoja Ćorić, Katarina Master's thesis / Diplomski rad 2014 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of agriculture / Sveučilište Josipa Jurja Strossmayera u Osijeku, Poljoprivredni fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:151:401348 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-27 Repository / Repozitorij: Repository of the Faculty of Agrobiotechnical Sciences Osijek - Repository of the Faculty of Agrobiotechnical Sciences Osijek SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA POLJOPRIVREDNI FAKULTET U OSIJEKU Katarina Ćorić, apsolvent Diplomski studij Povrćarstvo i cvjećarstvo, smjer Povrćarstvo i cvjećarstvo NAVODNJAVANJE GERBERA (Gerbera jamesonii) OVISNO O NAČINU UZGOJA Diplomski rad Osijek, 2014. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA POLJOPRIVREDNI FAKULTET U OSIJEK Katarina Ćorić, apsolvent Diplomski studij Povrćarstvo i cvjećarstvo, smjer Povrćarstvo i cvjećarstvo NAVODNJAVANJE GERBERA (Gerbera jamesonii) OVISNO O NAČINU UZGOJA Diplomski rad Osijek, 2014. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA POLJOPRIVREDNI FAKULTET U OSIJEKU Katarina Ćorić, apsolvent Diplomski studij Povrćarstvo i cvjećarstvo, smjer Povrćarstvo i cvjećarstvo NAVODNJAVANJE GERBERA (Gerbera jamesonii) OVISNO O NAČINU UZGOJA Diplomski rad Povjerenstvo za ocijenu i obranu diplomskog rada: 1. dr. sc. Monika Marković., predsjednik 2. Jasna Šoštarić prof. dr. sc., mentor 3. Alka
    [Show full text]
  • Missouri Environment and Garden Newsletter, February 2016
    Integrated Pest Management FEB 2016 Missouri Environment & Garden Monitoring, Detection and Management of Lettuce Drop caused by Sclerotinia spp. Zelalem Mersha, Assistant Professor and State Extension Specialist Biology and life cycle of the lettuce drop fungi The fungal pathogens in the genus Sclerotinia are known to cause diseases that are difficult to deal with on a wide range of crops. Lettuce is affected by two of these species, S. sclerotiorum and S. minor. Either of the two species may predominate on a given farm at a particular time. Both species may also exist in the same field as long as the prevailing weather favors them and, more importantly, based on the crop histories. S. minor Fig. 1. Initial symptom of lettuce drop on variety ‘Rex’ (left) and sclerotia of Sclerotinia sclerotiorum (right) from heavily diseased high tunnel lettuce grown in Missouri. is not a common problem of lettuce here in Missouri but S. sclerotiorum affects many vegetables (including lettuce) as well as grain crops such as soybeans. On lettuce, the type of damage inflicted by these fungi has two phases depending on when it started: a) the damping- off phase which attacks the seedling stages, and b) the field phase which causes a watery soft rot of lower leaves and crown areas (Fig. 1, left). This is followed by wilting and limping, leading to an obvious symptom commonly referred as DROP. Lettuce drop caused by Sclerotinia species is known to be a serious problem of lettuce production worldwide. Both species produce black, hard, seed-like resting bodies called sclerotia (sing.
    [Show full text]
  • Illustration Sources
    APPENDIX ONE ILLUSTRATION SOURCES REF. CODE ABR Abrams, L. 1923–1960. Illustrated flora of the Pacific states. Stanford University Press, Stanford, CA. ADD Addisonia. 1916–1964. New York Botanical Garden, New York. Reprinted with permission from Addisonia, vol. 18, plate 579, Copyright © 1933, The New York Botanical Garden. ANDAnderson, E. and Woodson, R.E. 1935. The species of Tradescantia indigenous to the United States. Arnold Arboretum of Harvard University, Cambridge, MA. Reprinted with permission of the Arnold Arboretum of Harvard University. ANN Hollingworth A. 2005. Original illustrations. Published herein by the Botanical Research Institute of Texas, Fort Worth. Artist: Anne Hollingworth. ANO Anonymous. 1821. Medical botany. E. Cox and Sons, London. ARM Annual Rep. Missouri Bot. Gard. 1889–1912. Missouri Botanical Garden, St. Louis. BA1 Bailey, L.H. 1914–1917. The standard cyclopedia of horticulture. The Macmillan Company, New York. BA2 Bailey, L.H. and Bailey, E.Z. 1976. Hortus third: A concise dictionary of plants cultivated in the United States and Canada. Revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. Cornell University. Macmillan Publishing Company, New York. Reprinted with permission from William Crepet and the L.H. Bailey Hortorium. Cornell University. BA3 Bailey, L.H. 1900–1902. Cyclopedia of American horticulture. Macmillan Publishing Company, New York. BB2 Britton, N.L. and Brown, A. 1913. An illustrated flora of the northern United States, Canada and the British posses- sions. Charles Scribner’s Sons, New York. BEA Beal, E.O. and Thieret, J.W. 1986. Aquatic and wetland plants of Kentucky. Kentucky Nature Preserves Commission, Frankfort. Reprinted with permission of Kentucky State Nature Preserves Commission.
    [Show full text]
  • (Gerbera Jamesonii) Under Naturally Ventilated Polyhouse Condition in Prayagraj
    Int.J.Curr.Microbiol.App.Sci (2020) 9(10): 2633-2639 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 10 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.910.317 Varietal Evaluation of Gerbera (Gerbera jamesonii) under Naturally Ventilated Polyhouse Condition in Prayagraj MD. Akhtar*, Devi Singh and Urfi Fatmi Department of Horticulture, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India *Corresponding author ABSTRACT K e yw or ds The present experiment was carried out during December 2019 to April 2020 in Research Field, Gerbera and Department of Horticulture, SHUATS, Prayagraj. The experiment was conducted in Randomized Varieties Block Design (RBD), with ten verities of Gerbera, the varieties were replicated thrice. The varieties were V1 (Regina), V2 (Bernika), V3 (Martyana), V4 (Albert), V5 (Salsa), V6 (Marzena), V7 (Marta), V8 (Lisiecka), V9 (Korman) and V10 (Pal). Form the present investigation it is found that among the A rticle Info ten varieties of Gerbera. Variety Bernika found superior in Growth and yield characters followed by variety Korman and Martyana. In disc diameter and suckers yield variety Albert found superior. In Accepted: vase life, Korman was superior, Minimum growth and yield was recorded in variety Marta, Pal and 20 September 2020 Regina. Maximum gross return, net return and Cost: benefit ratio was recorded in variety Bernika Available Online: and minimum in variety Regina. 10 October 2020 Introduction than two rows of ray florets and flower quality is better than single. The leaves are Gerbera botanically known as Gerbera petioled, entire or pinnatly lobed, coarse or jamesonii belongs to the family Asteraceae.
    [Show full text]
  • Helwingia Willd Cheng Sun†, Guoliang Yu†, Manzhu Bao, Bo Zheng and Guogui Ning*
    Sun et al. BMC Research Notes 2014, 7:402 http://www.biomedcentral.com/1756-0500/7/402 RESEARCH ARTICLE Open Access Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd Cheng Sun†, Guoliang Yu†, Manzhu Bao, Bo Zheng and Guogui Ning* Abstract Background: Odd traits in few of plant species usually implicate potential biology significances in plant evolutions. The genus Helwingia Willd, a dioecious medical shrub in Aquifoliales order, has an odd floral architecture-epiphyllous inflorescence. The potential significances and possible evolutionary origin of this specie are not well understood due to poorly available data of biological and genetic studies. In addition, the advent of genomics-based technologies has widely revolutionized plant species with unknown genomic information. Results: Morphological and biological pattern were detailed via anatomical and pollination analyses. An RNA sequencing based transcriptomic analysis were undertaken and a high-resolution phylogenetic analysis was conducted based on single-copy genes in more than 80 species of seed plants, including H. japonica. It is verified that a potential fusion of rachis to the leaf midvein facilitates insect pollination. RNA sequencing yielded a total of 111450 unigenes; half of them had significant similarity with proteins in the public database, and 20281 unigenes were mapped to 119 pathways. Deduced from the phylogenetic analysis based on single-copy genes, the group of Helwingia is closer with Euasterids II and rather than Euasterids, congruent with previous reports using plastid sequences. Conclusions: The odd flower architecture make H. Willd adapt to insect pollination by hosting those insects larger than the flower in size via leave, which has little common character that other insect pollination plants hold.
    [Show full text]
  • In Vitro Flower Induction in Gerbera (Gerbera Jamesonii Adlam)
    Tropical Agricultural Research Vol. 18 In Vitro Flower Induction in Gerbera (Gerbera Jamesonii Adlam) R.A.T.D. Ranasinghe, A.G.N.I. Abayagunawardana, H.I.D.D. Hettiarachchi 1 A.R.F. Farzana and J.P. Eeswara Postgraduate Institute of Agriculture University of Peradeniya Peradeniya ABSTRACT. Gerbera (Gerbera Jamesonii Adlam) plantlets obtained from seeds grown on ¼ strength Murashige-Skoog (MS) medium supplemented with 3% sucrose were multiplied on full-strength MS medium supplemented with 0.5 mg/l BAP and 3% sucrose. The individual and combined effects of sucrose concentrations (0, 1, 3, 5 and 8%), strength of the medium (full strength and half strength MS medium), and Gibberellic Acid (GA3) concentration (0, 1 and 5 mg/l GA3) on in vitro flower induction of multiplied gerbera plantlets were investigated. In vitro flower induction was achieved on full-strength MS medium containing 8% (w/v) sucrose and 5 mg/l of GA3 and 74% of the gerbera plants grown on this medium produced flowers. INTRODUCTION Gerbera (Gerbera jamesonii Adlam), commonly known as Barbeton daisies, belongs to the family Compositae (Asteraceae). This is a beautiful and popular flower in the cut flower industry and it possesses characters such as different colors, high productivity, flowering precocity and long vase life. Therefore, gerbera has very high demand, which is not fulfilled, both in the local and export markets. In the local market, the price of a single flower ranges from Rs. 10.00 to 20.00 and the price of a pot ranges from Rs. 150.00 to 200.00. Therefore, to cater to this huge demand, gerbera cultivation in Sri Lanka should be expanded to areas other than the upcountry, where gerbera is predominantly cultivated.
    [Show full text]