Effects of Endocrine Disruptors on Prosobranch Snails ( ) Mollusca

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Endocrine Disruptors on Prosobranch Snails ( ) Mollusca Ecotoxicology, 9, 383᎐397, 2000 ᮊ 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Effects of Endocrine Disruptors on Prosobranch Snails ()Mollusca: Gastropoda in the Laboratory. Part I: Bisphenol A and Octylphenol as Xeno-Estrogens JORGÈ OEHLMANN,* ULRIKE SCHULTE-OEHLMANN, MICHAELA TILLMANN AND BERND MARKERT Internationales Hochschulinstitut Zittau, Lehrstuhl Umwelt¨erfahrenstechnik, Fachgruppe Human- und Okotoxikologie,È Markt 23, D-02763 Zittau, Germany Abstract. The effects of suspected endocrine disrupting chemicals on freshwater and marine proso- branch species were analysed in laboratory experiments. In this first publication, the responses of the freshwater snail Marisa cornuarietis and of the marine prosobranch Nucella lapillus to the xeno-estro- genic model compounds bisphenol AŽ. BPA and octylphenol Ž. OP are presented at nominal concentra- tion ranges between 1 and 100 ␮grL. Marisa was exposed during 5 months using adult specimens and in a complete life-cycle test for 12 months. In both experiments, the xeno-estrogens induced a complex syndrome of alterations in female Marisa referred to as ``superfemales'' at the lowest concentrations. Affected specimens were characterised by the formation of additional female organs, an enlargement of the accessory pallial sex glands, gross malformations of the pallial oviduct section resulting in an increased female mortality, and a massive stimulation of oocyte and spawning mass production. The effects of BPA and OP were comparable at the same nominal concentrations. An exposure to OP resulted in inverted U-type concentration response relationships for egg and spawning mass production. Adult Nucella from the field were tested for three months in the laboratory. As in Marisa, superfemales with enlarged accessory pallial sex glands and an enhancement of oocyte production were observed. No oviduct malformations were found probably due to species differences in the gross anatomical structure of the pallial oviduct. A lower percentage of exposed specimens had ripe sperm stored in their vesicula seminalis and additionally male Nucella exhibited a reduced length of penis and prostate gland when compared to the control. Because statistically significant effects were observed at the lowest nominal test concentrationsŽ. 1 ␮g BPA or OPrL , it can be assumed that even lower concentrations may have a negative impact on the snails. The results show that prosobranchs are sensitive to endocrine disruption at environmentally relevant concentrations and that especially M. cornuarietis is a promising candidate for a future organismic invertebrate model to identify endocrine-mimetic test compounds. Keywords: endocrine disruptors; xeno-estrogens; bisphenol A; octylphenol; snails *To whom correspondence should be addressed: IHI Zittau, Markt 23, D-02763 Zittau, Germany. E-mail: oehlmann@ihi- zittau.de. 384 J. Oehlmann et al. Introduction as endocrine modulators on freshwater and ma- rine prosobranch species in the laboratory. Most Recent reports have shown that a number of of the results were obtained during a research xenobiotics in the environment are capable of project for the German Federal Environmental interfering with the normal endocrine function in AgencyŽ. project code 216 02 001r04 between a variety of animals and also in humans. Some of September 1997 and May 2000. The objective was the reported effects of suspected endocrine dis- to develop an organismic invertebrate test system ruptors in humans include decreased sperm for the simultaneous identification of either an- counts, increased cases of breast, testicular and drogen- or estrogen-mimicking chemicals. Re- other forms of reproductive cancers, genital ab- cently, gonochoristic prosobranchs were rated as normalitiesŽ. e.g. hypospadia, cryptorchidism , pre- the most promising candidates for this purpose mature puberty in females, and increased cases of next to insects and crustaceansŽ deFur et al., endometriosisŽ. Gist, 1998 . The overwhelming 1999. This first publication is focussed on the majority of the studies on the effects of hormone- effects of two suspected xeno-estrogens, bisphe- mimetic industrial chemicals were focussed on nol AŽ. BPA and octylphenol Ž. OP . The next findings in vertebrates. More detailed informa- papers will be dedicated to the xeno-androgen tion about the effects on and mechanisms of triphenyltin and the xeno-antiandrogen vinclo- action in invertebrates has only been obtained zolin. from a few cases although invertebrates represent The first evidence that bisphenol A and more than 95% of the known species in the alkylphenols could be estrogenic was published in animal kingdomŽ. deFur et al., 1999 . The limited the 1930s on the basis of feeding experiments number of examples for endocrine disruption in with BPA and 4-propylphenol to ovariectomised invertebrates is partially due to the fact that their ratsŽ. Dodds and Lawson, 1936, 1938 . More re- hormonal systems are rather poorly understood in cent research has highlighted the implications of comparison with vertebrates. Deleterious en- these effects. The growth of human breast cancer docrine changes following an exposure to certain cellŽ. MCF-7 cultures is affected by octylphenol compounds may therefore easily be missed or at concentrations as low as 0.1 ␮M20Ž.␮grL simply be unmeasurable at present, even though a Ž. number of field investigations and laboratory e.g. Soto et al., 1991 . Estrogenic effects have studies show that endocrine disruption has proba- also been shown in tissue and cell culture experi- bly occurredŽ. for review: deFur et al., 1999 . The ments with rainbow trout hepatocytes, chicken example of tributyltinŽ. TBT compounds and their embryo fibroblasts and in mammalian estrogen masculinising effects in about 150 species of receptor assaysŽ Jobling and Sumpter, 1993; White prosobranch molluscs shows that apparently triv- et al., 1994; Yamakoshi et al., 2000. ial biochemical changesŽ inhibition of aromatase Bisphenol A is manufactured for the plastics activity according to Bettin et al.Ž. 1996 , can have industry as an intermediate in the production of drastic effects up to the population and commu- polycarbonate and epoxy resins. A smaller amount nity levels by a final sterilisation of affected fe- is used in the manufacture of thermopaper, tyres, males. According to Matthiessen and GibbsŽ. 1998 dental composites and sealantsŽ. BUA, 1997 . The there is no reason to suppose that such far-re- total BPA consumption in Germany was approxi- aching changes are in any sense unique. The main mately 163,000 t in 1994. In 1993, the correspond- endocrine effects of TBT in these molluscs are ing amounts for Western Europe were 347,000 t, the induction of imposex, an additional formation for the USA 552,000 t and Japan 214,000 tŽ BUA, of male sex characters like penis andror vas 1997. deferens on femalesŽ Gibbs et al., 1987; BPA is not readily biodegradableŽ less than Oehlmann, 1994. and of intersex which is charac- 1% transformation in 28 days in sewage treat- terised by a modification or supplanting of female ment plants according to Howard, 1989. although by male sex organsŽ. Bauer et al., 1995, 1997 . with sufficiently adapted microorganisms, it can This publication is the first in a series which be eliminated to more than 90% in the laboratory investigates effects of compounds suspected to act and in industrial sewage treatment plants. Under Endocrine Effects on Prosobranchs. I: Xeno-Estrogens 385 environmental conditions neither hydrolysis nor of tens of ␮grL of a wide range of alkylphenolic photolysis is likelyŽ. BUA, 1997 . compoundsŽ. Ahel et al., 1994b . Low levels were There is evidence from estrogen receptor reported for drinking water in the USA, with a Ž.Greim, 1998 and MCF-7 assays Ž Krishnan et al., total concentration of alkylphenols of almost 1993. that BPA exhibits an estrogen-mimetic ac- 1 ␮grL and a concentration of OP2EO of 32 tion at concentrations as low as 2᎐5 ␮grL. The ngrLŽ. Clark et al., 1992 . results for in vivo studies with mammals are con- flictingŽ. see Discussion . Materials and methods The occurrence of BPA in aquatic ecosystems is summarised by RippenŽ. 1999 . In effluents from The experiments were performed with two dif- sewage treatment plants in BerlinŽ. Germany ferent gonochoristic prosobranch species, the concentrations of up to 160 ngrL were detected freshwater ramshorn snail, Marisa cornuarietis in 1997Ž mean: 80 ngrL; median: 60 ngrL; ns Ž.Mesogastropoda: Ampullariidae , and the ma- 12. The highest concentrations in rivers were rine dogwhelk Nucella lapillus ŽNeogastropoda: reported from JapanŽ. Tokyo region with values Muricidae. Marisa specimens came from our own between 10 and 1,900 ngrL. In smaller rivers laboratory breeding stock which was built up with near Berlin concentrations of up to 410 ngrL specimens obtained from the breeding stock of were reported for 1997Ž mean: 23 ngrL; median: Aquazoo DusseldorfŽ. Germany in 1991. Dog- 6ngrL; ns41. In the same river system sedi- È whelks came directly from the field and were ments were contaminated with - 5᎐150 ␮g collected at Mean Melen, Brittany, in March 1999. BPArkgŽ.Ž dry wt. mean and median: 42 ␮grkg; ÂÂ For all laboratory experiments, a 24 h ns19.Ž. In the Rhine estuary The Netherlands Ž.weekends: 48 h semi-static renewal system in 60 concentrations were between -10 and 119 ngrL litre glass aquaria filled with tap waterŽ. for Marisa in 1989. The measured bioconcentration factors or artificial seawaterŽ. for Nucella; salinity 35½ for BPA in carp Ž.-100 , calculated values Ž BCF and provided with an Eheim power filter was up to 366. and the log P value of 3.32᎐3.4 ow used. The tests were performed under constant suggest a low bioaccumulation potential in aquatic conditions with a temperature of 22"1ЊC for organismsŽ. BUA, 1997 . freshwater and 14"1ЊC for marine snails; the NonylphenolŽ. NP and octylphenol are the most light dark cycle was adjusted to 12:12 h. important high production volume alkylphenols Three different series of exposure experiments with nonylphenol ethoxylatesŽ. NPnEO taking ap- were conducted with the test compounds bisphe- proximately 80% of the world market, and nol AŽ.
Recommended publications
  • <I>Marisa Cornuarietis</I>? Part I: Intra- and Inter-Laboratory Variabi
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Valery Forbes Publications Papers in the Biological Sciences 2007 Does Bisphenol A Induce Superfeminization in Marisa cornuarietis? Part I: Intra- and Inter-Laboratory Variability in Test Endpoints Valery E. Forbes University of Nebraska-Lincoln, [email protected] Henriette Selck Roskilde University, [email protected] Annemette Palmqvist Roskilde University, Denmark John Aufderheide ABC Laboratories, Inc., Columbia, Missouri Ryan Warbritton ABC Laboratories, Inc., Columbia, Missouri See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/biosciforbes Part of the Pharmacology, Toxicology and Environmental Health Commons Forbes, Valery E.; Selck, Henriette; Palmqvist, Annemette; Aufderheide, John; Warbritton, Ryan; Pounds, Nadine; Thompson, Roy; and Caspers, Norbert, "Does Bisphenol A Induce Superfeminization in Marisa cornuarietis? Part I: Intra- and Inter-Laboratory Variability in Test Endpoints" (2007). Valery Forbes Publications. 25. https://digitalcommons.unl.edu/biosciforbes/25 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Valery Forbes Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Valery E. Forbes, Henriette Selck, Annemette Palmqvist, John Aufderheide, Ryan Warbritton, Nadine Pounds, Roy Thompson, and Norbert Caspers This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ biosciforbes/25 Published in Ecotoxicology and Environmental Safety 66 (2007), pp. 309-318; DOI: 10.1016/j.ecoenv.2006.10.014. Copyright © 2007 Elsevier Inc. Used by permission. Submitted July 10, 2006; revised October 20, 2006; accepted October 25, 2006; published online December 8, 2006.
    [Show full text]
  • Native Biodiversity Collapse in the Eastern Mediterranean Supplementary Material: Details on Methods and Additional Results/Figures and Tables
    Native biodiversity collapse in the Eastern Mediterranean Supplementary material: details on methods and additional results/figures and tables Paolo G. Albano1, Jan Steger1, Marija Bošnjak1,2, Beata Dunne1, Zara Guifarro1, Elina Turapova1, Quan Hua3, Darrell S. Kaufman4, Gil Rilov5, Martin Zuschin1 1 Department of Paleontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria 2 Croatian Natural History Museum, Demetrova 1, Zagreb, Croatia 3 Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia 4 School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona 86011 USA 5 National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108001, Israel 1 Additional information on the methodology 1.1 Study area and sampling sites Table S1. List of sampling stations on the Mediterranean coast of Israel. Latitude Longitude Station Locality Depth [m] Date Device Substrate Replicates [N] [E] Intertidal rocky substrate S8 Tel Aviv 32.08393 34.76573 Intertidal 27/04/2018 Scraping Breakwaters 3 S9 Netanya 32.32739 34.84591 Intertidal 29/04/2018 Scraping Breakwaters 4 S10 Ashqelon 31.68542 34.55967 Intertidal 30/04/2018 Scraping Breakwaters 4 S57 Ashqelon 31.68542 34.55967 Intertidal 31/10/2018 Scraping Breakwaters 3 S61 Netanya 32.32739 34.84591 Intertidal 02/11/2018 Scraping Breakwaters 3 Rocky S62 Nahariyya 33.01262 35.08973 Intertidal 06/11/2018 Scraping 3 platform S63 Tel Aviv 32.08393 34.76573 Intertidal 08/11/2018 Scraping Breakwaters 3 Subtidal
    [Show full text]
  • Effects of Food Type, Feeding Frequency, and Temperature on Juvenile Survival and Growth of Marisa Cornuarietis (Mollusca: Gastropoda)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Valery Forbes Publications Papers in the Biological Sciences 2006 Effects of food type, feeding frequency, and temperature on juvenile survival and growth of Marisa cornuarietis (Mollusca: Gastropoda) Henriette Selck Roskilde University, [email protected] John Aufderheide ABC Laboratories, Inc., Columbia, Missouri Nadine Pounds Brixham Environmental Laboratory, AstraZeneca, Devon, UK Charles Staples Assessment Technologies Inc., Fredericksburg, Virginia Norbert Caspers Bayer AG, Institute for Environmental Analysis and Evaluation, Leverkusen, Germany See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/biosciforbes Part of the Pharmacology, Toxicology and Environmental Health Commons Selck, Henriette; Aufderheide, John; Pounds, Nadine; Staples, Charles; Caspers, Norbert; and Forbes, Valery E., "Effects of food type, feeding frequency, and temperature on juvenile survival and growth of Marisa cornuarietis (Mollusca: Gastropoda)" (2006). Valery Forbes Publications. 32. https://digitalcommons.unl.edu/biosciforbes/32 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Valery Forbes Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Henriette Selck, John Aufderheide, Nadine Pounds, Charles Staples, Norbert Caspers, and Valery
    [Show full text]
  • Pomacea Perry, 1810
    Pomacea Perry, 1810 Diagnostic features Large to very large globose smooth shells, sutures channelled (Pomacea canaliculata) or with the top of the whorl shouldered and flat at the suture (Pomacea diffusa). Shells umbilicate with unthickened lip. Uniform yellow to olive green with darker spiral bands. nterior of aperture orange to yellow. Operculate, with concentric operculum. Animal with distinctive head-foot; snout uniquely with a pair of distal, long, tentacle-like processes; cephalic tentacles very long. A long 'siphon' is also present. Classification Class Gastropoda Infraclass Caenogastropoda Informal group Architaenioglossa Order Ampullarida Superfamily Ampullarioidea Family Ampullariidae Genus Pomacea Perry, 1810 Type species: Pomacea maculata Perry, 1810 Original reference: Perry, G. 1810-1811. Arcana; or the Museum of Natural History, 84 pls., unnumbered with associated text. ssued in monthly parts, pls.[1-48] in 1810, [49-84] in 1811. Stratford, London. Type locality: Rio Parana, Argentina. Biology and ecology Amphibious, on sediment, weeds and other available substrates. Lays pink coloured egg masses on plants above the waterline. Distribution Native to North and South America but some species have been introduced around the world through the aquarium trade (Pomacea diffusa) and as a food source (Pomacea canaliculata). Pomacea diffusa has been reported from the Ross River in Townsville in NE Queensland, and from freshwater waterbodies in the greater Brisbane area, pswich and Urangan near Maryborough in SE Queensland. Notes This genus is widely known in the aquarium trade through the so-called mystery snail, Pomacea diffusa. n countries such as the Philippines, Hawaii and parts of SE Asia, the species Pomacea canaliculata (Lamarck) is a serious pest of rice crops.
    [Show full text]
  • Pomacea Diffusa) Ecological Risk Screening Summary
    Spike-topped Applesnail (Pomacea diffusa) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, November 2016 Revised, February 2017 Web Version, 12/11/2017 Photo: S. Ghesquiere. Licensed under CC BY-SA. Available: https://commons.wikimedia.org/w/index.php?curid=1840090. (February 2017). 1 Native Range and Status in the United States Native Range From Rawlings et al. (2007): “The type locality of Pomacea diffusa is in the city of Santa Cruz, Bolivia, although the species is widespread throughout the Amazon Basin.” Status in the United States From Fasulo (2011): “Pomacea diffusa Blume, 1957, the spike-topped applesnail, is a Brazilian species that was introduced into southern Florida, probably in the 1950s. This species [. .] is established in 1 Broward, Miami-Dade, Monroe and Palm Beach counties. It is also present in parts of central and north-central Florida. Collections have been made in Alabama and Mississippi. (FFWCC 2006, USGS [2009]).” From Rawlings et al. (2007): “Howells et al. [2006] reported its establishment in Mobile, Alabama in 2003.” From Cowie and Hayes (2012): “Pomacea diffusa […] was reported in the wild in Hawaii (Cowie, 1995) but has declined and was not recorded in more recent surveys (Cowie et al, 2007).” Means of Introductions in the United States From Fasulo (2011): “It is marketed as an aquarium species under the name "golden applesnail." However, commercial varieties have been bred for the aquarium trade, including the "albino mystery snail." These aquarium snails are sometimes dumped into isolated bodies of water and have been recovered as far north as Alachua County, Florida (Thompson 1984).” Remarks From GBIF (2016): “SYNONYMS Pomacea bridgesii subsp.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]
  • A Transcriptome Database for Eight Species of Apple Snails (Gastropoda: Ampullariidae) Jack C
    Ip et al. BMC Genomics (2018) 19:179 https://doi.org/10.1186/s12864-018-4553-9 DATABASE Open Access AmpuBase: a transcriptome database for eight species of apple snails (Gastropoda: Ampullariidae) Jack C. H. Ip1,2, Huawei Mu1, Qian Chen3, Jin Sun4, Santiago Ituarte5, Horacio Heras5,6, Bert Van Bocxlaer7,8, Monthon Ganmanee9, Xin Huang3* and Jian-Wen Qiu1,2* Abstract Background: Gastropoda, with approximately 80,000 living species, is the largest class of Mollusca. Among gastropods, apple snails (family Ampullariidae) are globally distributed in tropical and subtropical freshwater ecosystems and many species are ecologically and economically important. Ampullariids exhibit various morphological and physiological adaptations to their respective habitats, which make them ideal candidates for studying adaptation, population divergence, speciation, and larger-scale patterns of diversity, including the biogeography of native and invasive populations. The limited availability of genomic data, however, hinders in-depth ecological and evolutionary studies of these non-model organisms. Results: Using Illumina Hiseq platforms, we sequenced 1220 million reads for seven species of apple snails. Together with the previously published RNA-Seq data of two apple snails, we conducted de novo transcriptome assembly of eight species that belong to five genera of Ampullariidae, two of which represent Old World lineages and the other three New World lineages. There were 20,730 to 35,828 unigenes with predicted open reading frames for the eight species, with N50 (shortest sequence length at 50% of the unigenes) ranging from 1320 to 1803 bp. 69.7% to 80.2% of these unigenes were functionally annotated by searching against NCBI’s non-redundant, Gene Ontology database and the Kyoto Encyclopaedia of Genes and Genomes.
    [Show full text]
  • The Golden Apple Snail: Pomacea Species Including Pomacea Canaliculata (Lamarck, 1822) (Gastropoda: Ampullariidae)
    The Golden Apple Snail: Pomacea species including Pomacea canaliculata (Lamarck, 1822) (Gastropoda: Ampullariidae) DIAGNOSTIC STANDARD Prepared by Robert H. Cowie Center for Conservation Research and Training, University of Hawaii, 3050 Maile Way, Gilmore 408, Honolulu, Hawaii 96822, USA Phone ++1 808 956 4909, fax ++1 808.956 2647, e-mail [email protected] 1. PREFATORY COMMENTS The term ‘apple snail’ refers to species of the freshwater snail family Ampullariidae primarily in the genera Pila, which is native to Asia and Africa, and Pomacea, which is native to the New World. They are so called because the shells of many species in these two genera are often large and round and sometimes greenish in colour. The term ‘golden apple snail’ is applied primarily in south-east Asia to species of Pomacea that have been introduced from South America; ‘golden’ either because of the colour of their shells, which is sometimes a bright orange-yellow, or because they were seen as an opportunity for major financial success when they were first introduced. ‘Golden apple snail’ does not refer to a single species. The most widely introduced species of Pomacea in south-east Asia appears to be Pomacea canaliculata (Lamarck, 1822) but at least one other species has also been introduced and is generally confused with P. canaliculata. At this time, even mollusc experts are not able to distinguish the species readily or to provide reliable scientific names for them. This confusion results from the inadequate state of the systematics of the species in their native South America, caused by the great intra-specific morphological variation that exists throughout the wide distributions of the species.
    [Show full text]
  • Alderia Modesta Class: Gastropoda, Opisthobranchia Order: Sacoglossa a Sacoglossan Sea Slug Family: Limapontiidae
    Phylum: Mollusca Class: Gastropoda, Opisthobranchia Alderia modesta Order: Sacoglossa A sacoglossan sea slug Family: Limapontiidae Description Size: To 8 mm long; Coos Bay specimens to While sacoglossans superficially resemble 5 mm. the more well-known nudibranchs, they lack a Color: Greenish to yellowish-tan, black circlet of gills, solid rhinophores, and oral markings, base ivory. tentacles. One exception, Stiliger Body: Metamorphic, adult is an oblong, flat- fuscovittatus, has solid rhinophores; it is tiny bottomed form without tentacles or tail (Figs. (3 mm), transparent white with reddish brown 1, 2) (Evans 1953). patterns, and lives in Polysiphonia, a red alga. Rhinophores: Reduced, rolled and not solid In the family Limapontiidae there are two (Fig. 1); (Kozloff calls these cephalic additional species: projections 'dorsolateral tentacles,' not Olea hansineensis has only about 10 rhinophores) (Kozloff 1974). elongate cerata on its posterior dorsum; it is Foot: No parapodia (lateral flaps that could gray, and found commonly in Zostera beds. fold over dorsum); foot extends laterally Placida dendritica has a long, obvious tail, beyond body (Kozloff 1974). long cerata, and is pale yellow with dark Cerata: Dorsal projections, about 18 (Fig. 1), green lines. It is usually on algae Bryopsis or in two loose branches on both anterior and Codium in the rocky intertidal, and found in posterior halves of dorsum (Kozloff 1974). California and Puget Sound (Williams and Gills: Rather than a circlet of gills, like those Gosliner 1973). present in some other gastropods, they have None of the above are yellowish tan, have branchial processes set in six or seven small black markings, a tubular anus, and live diagonal rows on the sides of the back, on Vaucheria.
    [Show full text]
  • Biogeography of the Sacoglossa (Mollusca, Opisthobranchia)*
    Bonner zoologische Beiträge Band 55 (2006) Heft 3/4 Seiten 255–281 Bonn, November 2007 Biogeography of the Sacoglossa (Mollusca, Opisthobranchia)* Kathe R. JENSEN1) 1)Zoological Museum, Copenhagen, Denmark *Paper presented to the 2nd International Workshop on Opisthobranchia, ZFMK, Bonn, Germany, September 20th to 22nd, 2006 Abstract. The Sacoglossa (Mollusca, Opisthobranchia) comprise almost 400 nominal species level taxa. Of these 284 are considered valid (i.e., no published synonymies) in this study. About half of the nominal species have been descri- bed before 1950, and the 10 most productive taxonomists have described about half of the species. Distributions of all valid species are reviewed. The highest diversity is found in the islands of the Central Pacific, though species diversity is almost as high in the Indo-Malayan sub-province. The Caribbean forms another center of species diversity. These three areas are distinguished by the high number of Plakobranchoidea. Similarity among provinces is generally low. Endemi- city is high in most provinces, but this may be an artifact of collecting activity. The decrease in number of species with latitude is spectacular, and the number of cold-water endemics is very low, indicating that sacoglossans in cold tempe- rate regions are mostly eurythermic warm water/ tropical species. The highest number of species in cold temperate are- as is found in Japan and Southeastern Australia. This coincides with high species diversity of the algal genus Caulerpa, which constitutes the diet of all shelled and many non-shelled sacoglossans. Keywords. Species diversity, endemism. 1. INTRODUCTION Information on biogeography is important for understand- they have depth distributions restricted to the photic zone, ing speciation and phylogeny as well as for making deci- i.e.
    [Show full text]
  • Sexual Dimorphism in Esterified Steroid Levels in the Gastropod
    steroids 71 (2006) 435–444 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/steroids Sexual dimorphism in esterified steroid levels in the gastropod Marisa cornuarietis: The effect of xenoandrogenic compounds Gemma Janer a, Angeliki Lyssimachou a, Jean Bachmann b,Jorg¨ Oehlmann b, Ulrike Schulte-Oehlmann b, Cinta Porte a,∗ a Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona, Spain b Johann Wolfgang Goethe-University Frankfurt am Main, Department of Ecology and Evolution-Ecotoxicology, Siesmayerstr. 70, D-60054 Frankfurt, Germany article info abstract Article history: Molluscs can conjugate a variety of steroids to form fatty acid esters. In this work, the Received 16 June 2005 freshwater ramshorn snail Marisa cornuarietis was used to investigate sex differences in Received in revised form 4 January endogenous levels of esterified steroids. Testosterone and estradiol were mainly found in 2006 the esterified form in the digestive gland/gonad complex of M. cornuarietis, and males had Accepted 11 January 2006 higher levels of esterified steroids than females (4–10-fold). Additionally, the ability of sev- Published on line 17 April 2006 eral xenobiotics, namely tributyltin (TBT), methyltestosterone (MT) and fenarimol (FEN) to interfere with the esterification of testosterone and estradiol was investigated. All three Keywords: compounds induced imposex – appearance of male sexual characteristics in females. Expo- Esterification sure to TBT led to a decrease in both esterified testosterone (60–85%) and estradiol (16–53%) Testosterone in females after 100 days exposure, but had no effect on males. Exposure to FEN and MT did Estradiol not alter levels of esterified steroids in males or in females, although exposed females devel- Gastropod oped imposex after 150 days exposure.
    [Show full text]