Sexual Dimorphism in Esterified Steroid Levels in the Gastropod

Total Page:16

File Type:pdf, Size:1020Kb

Sexual Dimorphism in Esterified Steroid Levels in the Gastropod steroids 71 (2006) 435–444 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/steroids Sexual dimorphism in esterified steroid levels in the gastropod Marisa cornuarietis: The effect of xenoandrogenic compounds Gemma Janer a, Angeliki Lyssimachou a, Jean Bachmann b,Jorg¨ Oehlmann b, Ulrike Schulte-Oehlmann b, Cinta Porte a,∗ a Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona, Spain b Johann Wolfgang Goethe-University Frankfurt am Main, Department of Ecology and Evolution-Ecotoxicology, Siesmayerstr. 70, D-60054 Frankfurt, Germany article info abstract Article history: Molluscs can conjugate a variety of steroids to form fatty acid esters. In this work, the Received 16 June 2005 freshwater ramshorn snail Marisa cornuarietis was used to investigate sex differences in Received in revised form 4 January endogenous levels of esterified steroids. Testosterone and estradiol were mainly found in 2006 the esterified form in the digestive gland/gonad complex of M. cornuarietis, and males had Accepted 11 January 2006 higher levels of esterified steroids than females (4–10-fold). Additionally, the ability of sev- Published on line 17 April 2006 eral xenobiotics, namely tributyltin (TBT), methyltestosterone (MT) and fenarimol (FEN) to interfere with the esterification of testosterone and estradiol was investigated. All three Keywords: compounds induced imposex – appearance of male sexual characteristics in females. Expo- Esterification sure to TBT led to a decrease in both esterified testosterone (60–85%) and estradiol (16–53%) Testosterone in females after 100 days exposure, but had no effect on males. Exposure to FEN and MT did Estradiol not alter levels of esterified steroids in males or in females, although exposed females devel- Gastropod oped imposex after 150 days exposure. The decrease in esterified steroids by TBT could not be Imposex directly linked with a decrease in microsomal acyl-CoA:testosterone acyltransferase (ATAT) Acyl-CoA acyltransferase activity, which catalyzes the esterification of steroids. In fact, ATAT activity was marginally induced in organisms exposed to TBT for 50 days (1.3-fold), and significantly induced in males and females exposed to MT for 50 days (1.8- and 1.5-fold, respectively), whereas no effect on ATAT activity was observed after 150 days exposure. © 2006 Elsevier Inc. All rights reserved. 1. Introduction ortholog gene has been sequenced in the mollusc Aplysia cal- ifornica [7], suggesting that steroids might also function via Sex steroids, such as progesterone, testosterone and estra- interaction with steroid receptors in molluscs. In addition, diol, are present in molluscs [1], and several studies have rapid non-genomic effects of estradiol have been demon- demonstrated the ability of these organisms to synthesize sex strated in mussel neural tissue (increase in nitric oxide release steroids from precursors, such as cholesterol or pregnenolone [8]) and in mussel hemocytes (increase in calcium concen- [2–5]. Proteins with a high binding affinity for sex steroids have trations and changes in the phosphorylation of signal trans- been found in Octopus vulgaris [6], and an estrogen receptor ducers and transcription activators [9]). Although there are ∗ Corresponding author. Tel.: +34 93 4006175; fax: +34 93 2045904. E-mail address: [email protected] (C. Porte). 0039-128X/$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.steroids.2006.01.012 436 steroids 71 (2006) 435–444 still important gaps of knowledge concerning both genomic Apart from these studies, there is no data available on and non-genomic actions of steroids in molluscs, the above- endogenous levels of esterified steroids in other mollusc mentioned observations are suggestive of a physiological role species and/or what kind of pollutants can interfere with the of sex steroids in these organisms. Indeed, various studies fatty acid esterification of sex steroids. Thus, this study was have indicated that steroids are involved in the control of mol- designed to further investigate the presence and levels of sex- lusc reproduction and sex differentiation. For example, estra- ual steroids (testosterone and estradiol) in the freshwater gas- diol induces the accumulation of vitellin in the gonads of the tropod Marisa cornuarietis. Free and esterified steroid levels, scallop Patinopecten yessoensis [10]; testosterone administration together with fatty acid conjugating activities, were analyzed to castrated male slugs (Euhadra prelionphala) stimulates the and potential sexual dimorphism in these parameters was production of male secondary sex characteristics [11]; and the assessed. In addition, we investigated whether steroid levels administration of testosterone to female gastropods results were modulated by exposure to xenobiotic compounds and in the development of imposex with extensive penis and vas the association with the phenomenon of imposex and other deferens formation [12,13]. In addition, steroid levels vary in biological effects. Apart from TBT,two other compounds, fena- some species of molluscs in relation to the reproductive status rimol (FEN) and methyltestosterone (MT), were selected for the [3,14,15]. study. Steroid levels within the organism are at least partially reg- FEN is a widely used fungicide that has the potential to ulated by steroidogenesis and/or biotransformation enzymes. interfere with the endocrine system through several mecha- Hydroxylation and polar conjugation (sulfation and glu- nisms. It acts both as an estrogen agonist and an androgen curonidation), which are major metabolic pathways for testos- antagonist, and it is a potent aromatase inhibitor [24]. The terone or estradiol in vertebrates, seem to play a minor role in complexity of FEN action hampers the prediction of its in vivo the metabolism of testosterone in molluscs [16,17]. Instead, effects. Recently, FEN was reported to have an antiandrogenic snails metabolize most of the testosterone into fatty acid con- effect in rats in vivo [25]. In contrast, the effects observed jugates in vivo [16]. Esterification is mediated by a microso- in exposed fathead minnow did not reflect either aromatase mal acyl-coenzyme A acyltransferase enzyme, which, in addi- inhibition or androgen receptor antagonism [26]. In the snail tion to testosterone [16], can conjugate other steroids, such Nassarius reticulatus, FEN has been shown to induce imposex as estradiol and dehydroepiandrostenedione, with fatty acids [27]. The other compound tested, MT, is a synthetic androgen [18]. with high affinity for the mammalian androgen receptor [28] Esterified steroids are not easily excreted from the organ- that has been shown to cause imposex in M. cornuarietis [29]. ism, but stored in fatty tissues. In mammalian species, they are considered potent long acting steroids because, in com- 2. Experimental parison to unconjugated steroids, they are metabolized and excreted at a very low rate [19]. Esterified steroids do not 2.1. Chemicals bind to receptors [20], but can be hydrolyzed by esterases, again liberating the active steroid [19]. Recent studies sug- Tributyltin chloride, fenarimol, methyltestosterone, testos- gest that esterification might be an important factor in reg- terone and estradiol were obtained from Sigma (Stein- ulating the levels of free hormones in molluscs. Thus, Good- heim, Germany). [4-14C]testosterone (specific activity ing and LeBlanc [15] showed that exposure to exogenous 50–60 mCi/mmol) was purchased from NEN Life Science testosterone increased the retention of testosterone as fatty Products Inc. (Boston, MA, USA). Radioimmunoassay (RIA) acid esters in Ilyanassa obsoleta, while unconjugated testos- kits for testosterone and 17␤-estradiol were obtained from terone levels did not appreciably change. Similarly, exoge- Radim (Rome, Italy). All solvents and reagents were of nously administered estradiol was extensively esterified by analytical grade, except tributyltin chloride (96%) and methyl- the mussel Mytilus galloprovincialis, whereas unconjugated testosterone (above 98%). estradiol levels remained almost unaltered [21]. The balance between conjugated and unconjugated steroids also appeared 2.2. Animals to control the variations in unconjugated steroid levels dur- ing the reproductive cycle. Thus, snails at the onset or end of Ramshorn snail, M. cornuarietis (Mollusca: Prosobranchia: the reproductive period had high levels of free testosterone Ampullariidae), is a subtropical species, originally inhabiting coincident with low levels of testosterone fatty acid esters stagnant and slow running freshwater bodies in the northern [15]. part of South America. Because ramshorn snails were used Xenobiotic compounds, such as tributyltin (TBT), have been as a biological control agent in many tropical countries for shown to interfere with the esterification of testosterone [22]. molluscs (Biomphalaria glabrata) hosting trematodes known to TBT is an organotin compound that causes imposex (impo- induce intestinal schistosomiasis, Marisa can also be found sition of male genital characters in females) in several gas- today in the Caribbean, Central and North America, Africa and tropod species at very low concentrations (few ng/L) [23]. Asia. The species is gonochoristic and oviparous, attaining a Recently, Gooding et al. [22] showed that females experimen- maximum shell diameter of up to 5 cm. Juvenile snails hatch tally exposed to 10 ng/L TBT for 3 months showed a lower from the eggs after 8–13 days and reach sexual
Recommended publications
  • <I>Marisa Cornuarietis</I>? Part I: Intra- and Inter-Laboratory Variabi
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Valery Forbes Publications Papers in the Biological Sciences 2007 Does Bisphenol A Induce Superfeminization in Marisa cornuarietis? Part I: Intra- and Inter-Laboratory Variability in Test Endpoints Valery E. Forbes University of Nebraska-Lincoln, [email protected] Henriette Selck Roskilde University, [email protected] Annemette Palmqvist Roskilde University, Denmark John Aufderheide ABC Laboratories, Inc., Columbia, Missouri Ryan Warbritton ABC Laboratories, Inc., Columbia, Missouri See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/biosciforbes Part of the Pharmacology, Toxicology and Environmental Health Commons Forbes, Valery E.; Selck, Henriette; Palmqvist, Annemette; Aufderheide, John; Warbritton, Ryan; Pounds, Nadine; Thompson, Roy; and Caspers, Norbert, "Does Bisphenol A Induce Superfeminization in Marisa cornuarietis? Part I: Intra- and Inter-Laboratory Variability in Test Endpoints" (2007). Valery Forbes Publications. 25. https://digitalcommons.unl.edu/biosciforbes/25 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Valery Forbes Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Valery E. Forbes, Henriette Selck, Annemette Palmqvist, John Aufderheide, Ryan Warbritton, Nadine Pounds, Roy Thompson, and Norbert Caspers This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ biosciforbes/25 Published in Ecotoxicology and Environmental Safety 66 (2007), pp. 309-318; DOI: 10.1016/j.ecoenv.2006.10.014. Copyright © 2007 Elsevier Inc. Used by permission. Submitted July 10, 2006; revised October 20, 2006; accepted October 25, 2006; published online December 8, 2006.
    [Show full text]
  • Effects of Food Type, Feeding Frequency, and Temperature on Juvenile Survival and Growth of Marisa Cornuarietis (Mollusca: Gastropoda)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Valery Forbes Publications Papers in the Biological Sciences 2006 Effects of food type, feeding frequency, and temperature on juvenile survival and growth of Marisa cornuarietis (Mollusca: Gastropoda) Henriette Selck Roskilde University, [email protected] John Aufderheide ABC Laboratories, Inc., Columbia, Missouri Nadine Pounds Brixham Environmental Laboratory, AstraZeneca, Devon, UK Charles Staples Assessment Technologies Inc., Fredericksburg, Virginia Norbert Caspers Bayer AG, Institute for Environmental Analysis and Evaluation, Leverkusen, Germany See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/biosciforbes Part of the Pharmacology, Toxicology and Environmental Health Commons Selck, Henriette; Aufderheide, John; Pounds, Nadine; Staples, Charles; Caspers, Norbert; and Forbes, Valery E., "Effects of food type, feeding frequency, and temperature on juvenile survival and growth of Marisa cornuarietis (Mollusca: Gastropoda)" (2006). Valery Forbes Publications. 32. https://digitalcommons.unl.edu/biosciforbes/32 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Valery Forbes Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Henriette Selck, John Aufderheide, Nadine Pounds, Charles Staples, Norbert Caspers, and Valery
    [Show full text]
  • Pomacea Perry, 1810
    Pomacea Perry, 1810 Diagnostic features Large to very large globose smooth shells, sutures channelled (Pomacea canaliculata) or with the top of the whorl shouldered and flat at the suture (Pomacea diffusa). Shells umbilicate with unthickened lip. Uniform yellow to olive green with darker spiral bands. nterior of aperture orange to yellow. Operculate, with concentric operculum. Animal with distinctive head-foot; snout uniquely with a pair of distal, long, tentacle-like processes; cephalic tentacles very long. A long 'siphon' is also present. Classification Class Gastropoda Infraclass Caenogastropoda Informal group Architaenioglossa Order Ampullarida Superfamily Ampullarioidea Family Ampullariidae Genus Pomacea Perry, 1810 Type species: Pomacea maculata Perry, 1810 Original reference: Perry, G. 1810-1811. Arcana; or the Museum of Natural History, 84 pls., unnumbered with associated text. ssued in monthly parts, pls.[1-48] in 1810, [49-84] in 1811. Stratford, London. Type locality: Rio Parana, Argentina. Biology and ecology Amphibious, on sediment, weeds and other available substrates. Lays pink coloured egg masses on plants above the waterline. Distribution Native to North and South America but some species have been introduced around the world through the aquarium trade (Pomacea diffusa) and as a food source (Pomacea canaliculata). Pomacea diffusa has been reported from the Ross River in Townsville in NE Queensland, and from freshwater waterbodies in the greater Brisbane area, pswich and Urangan near Maryborough in SE Queensland. Notes This genus is widely known in the aquarium trade through the so-called mystery snail, Pomacea diffusa. n countries such as the Philippines, Hawaii and parts of SE Asia, the species Pomacea canaliculata (Lamarck) is a serious pest of rice crops.
    [Show full text]
  • Pomacea Diffusa) Ecological Risk Screening Summary
    Spike-topped Applesnail (Pomacea diffusa) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, November 2016 Revised, February 2017 Web Version, 12/11/2017 Photo: S. Ghesquiere. Licensed under CC BY-SA. Available: https://commons.wikimedia.org/w/index.php?curid=1840090. (February 2017). 1 Native Range and Status in the United States Native Range From Rawlings et al. (2007): “The type locality of Pomacea diffusa is in the city of Santa Cruz, Bolivia, although the species is widespread throughout the Amazon Basin.” Status in the United States From Fasulo (2011): “Pomacea diffusa Blume, 1957, the spike-topped applesnail, is a Brazilian species that was introduced into southern Florida, probably in the 1950s. This species [. .] is established in 1 Broward, Miami-Dade, Monroe and Palm Beach counties. It is also present in parts of central and north-central Florida. Collections have been made in Alabama and Mississippi. (FFWCC 2006, USGS [2009]).” From Rawlings et al. (2007): “Howells et al. [2006] reported its establishment in Mobile, Alabama in 2003.” From Cowie and Hayes (2012): “Pomacea diffusa […] was reported in the wild in Hawaii (Cowie, 1995) but has declined and was not recorded in more recent surveys (Cowie et al, 2007).” Means of Introductions in the United States From Fasulo (2011): “It is marketed as an aquarium species under the name "golden applesnail." However, commercial varieties have been bred for the aquarium trade, including the "albino mystery snail." These aquarium snails are sometimes dumped into isolated bodies of water and have been recovered as far north as Alachua County, Florida (Thompson 1984).” Remarks From GBIF (2016): “SYNONYMS Pomacea bridgesii subsp.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]
  • A Transcriptome Database for Eight Species of Apple Snails (Gastropoda: Ampullariidae) Jack C
    Ip et al. BMC Genomics (2018) 19:179 https://doi.org/10.1186/s12864-018-4553-9 DATABASE Open Access AmpuBase: a transcriptome database for eight species of apple snails (Gastropoda: Ampullariidae) Jack C. H. Ip1,2, Huawei Mu1, Qian Chen3, Jin Sun4, Santiago Ituarte5, Horacio Heras5,6, Bert Van Bocxlaer7,8, Monthon Ganmanee9, Xin Huang3* and Jian-Wen Qiu1,2* Abstract Background: Gastropoda, with approximately 80,000 living species, is the largest class of Mollusca. Among gastropods, apple snails (family Ampullariidae) are globally distributed in tropical and subtropical freshwater ecosystems and many species are ecologically and economically important. Ampullariids exhibit various morphological and physiological adaptations to their respective habitats, which make them ideal candidates for studying adaptation, population divergence, speciation, and larger-scale patterns of diversity, including the biogeography of native and invasive populations. The limited availability of genomic data, however, hinders in-depth ecological and evolutionary studies of these non-model organisms. Results: Using Illumina Hiseq platforms, we sequenced 1220 million reads for seven species of apple snails. Together with the previously published RNA-Seq data of two apple snails, we conducted de novo transcriptome assembly of eight species that belong to five genera of Ampullariidae, two of which represent Old World lineages and the other three New World lineages. There were 20,730 to 35,828 unigenes with predicted open reading frames for the eight species, with N50 (shortest sequence length at 50% of the unigenes) ranging from 1320 to 1803 bp. 69.7% to 80.2% of these unigenes were functionally annotated by searching against NCBI’s non-redundant, Gene Ontology database and the Kyoto Encyclopaedia of Genes and Genomes.
    [Show full text]
  • The Golden Apple Snail: Pomacea Species Including Pomacea Canaliculata (Lamarck, 1822) (Gastropoda: Ampullariidae)
    The Golden Apple Snail: Pomacea species including Pomacea canaliculata (Lamarck, 1822) (Gastropoda: Ampullariidae) DIAGNOSTIC STANDARD Prepared by Robert H. Cowie Center for Conservation Research and Training, University of Hawaii, 3050 Maile Way, Gilmore 408, Honolulu, Hawaii 96822, USA Phone ++1 808 956 4909, fax ++1 808.956 2647, e-mail [email protected] 1. PREFATORY COMMENTS The term ‘apple snail’ refers to species of the freshwater snail family Ampullariidae primarily in the genera Pila, which is native to Asia and Africa, and Pomacea, which is native to the New World. They are so called because the shells of many species in these two genera are often large and round and sometimes greenish in colour. The term ‘golden apple snail’ is applied primarily in south-east Asia to species of Pomacea that have been introduced from South America; ‘golden’ either because of the colour of their shells, which is sometimes a bright orange-yellow, or because they were seen as an opportunity for major financial success when they were first introduced. ‘Golden apple snail’ does not refer to a single species. The most widely introduced species of Pomacea in south-east Asia appears to be Pomacea canaliculata (Lamarck, 1822) but at least one other species has also been introduced and is generally confused with P. canaliculata. At this time, even mollusc experts are not able to distinguish the species readily or to provide reliable scientific names for them. This confusion results from the inadequate state of the systematics of the species in their native South America, caused by the great intra-specific morphological variation that exists throughout the wide distributions of the species.
    [Show full text]
  • Kenneth Hayes: Invasive Ampullariidae (Apple Snails)
    d’Orbigny 1935 "On a global basis...the two great destroyers of biodiversity are, first habitat destruction and, second, invasion by exotic species” - E.O. Wilson Invasive Ampullariidae (Mollusca: Caenogastropoda) National Plant Diagnostic Network Malacology Workshop UC Davis 16-18 June 2015 Kenneth A. Hayes Howard University, Department of Biology Washington, DC What are Apple Snails? Freshwater snails in the family Ampullariidae 117 3 3 7 3 30 21 1 2 Pomacea Marisa Felipponea Asolene Pomella Pila Lanistes Afropomus Saulea Berthold 1991; Bieler 1993; Cowie & Thiengo 2003; Hayes et al. 2009, 2014 Invasion Biology • Introduced around the world – Aquaculture and aquarium trade – SE Asia, Spain, USA, Iran, Russia, Pacific Islands, Africa, India – Major pest of rice and other aquatic crops – Major environmental pest Disease Ecology and Public Health Angiostrongylus cantonensis A. cantonensis in rat brain Lv. et al. 2011 Jaynee R. Kim, Kenneth A. Hayes, Norine W. Yeung and Robert H. Cowie Photo: Camila Krug Graeff-Teixeira et al 2009 Norine W. Yeung, Kenneth A. Hayes, and Robert H. Cowie Invasive Apple Snails – Pila sp. – Pila dolioides – Pomacea sp. – Pomacea canaliculata – Pomacea lineata – Pomacea cuprina – Pomacea gigas – Pomacea insularum – Pomacea insularis – Pomacea insularus − Pomacea scalaris − Pomacea bridgesii − Pomacea diffusa − Pomacea cuprina − Pomacea haustrum − Pomacea paludosa − Ampullarius sp. − Ampullarium canaliculata − Ampullaria cuprina − Ampullaria levior − Ampullarium insularum Agricultural Damage Number 1 Rice Pest in SE Asia Number 1 Taro Pest in Hawaii Damage • Alteration of ecosystems – Near complete removal of aquatic vegetation – Competition with native herbivores – Consumption of native snails and invertebrates • Trophic shifts – Macrophyte dominated to phytoplankton dominated • Declining biodiversity and ecosystem stability Aditya & Raut 2002; Carlsson et al.
    [Show full text]
  • Spiketop Applesnail (Pomacea Bridgesi) Ecological Risk Screening Summary
    Spiketop Applesnail (Pomacea bridgesi) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, May 2012 Revised, May 2018 Web Version, 9/12/2018 Photo: K. Hayes. Licensed under CC BY-NC 3.0. Available: 9http://eol.org/data_objects/13234705. (May 2018). 1 Native Range and Status in the United States Native Range From Pastorino and Darrigan (2011): “This species is found in Paraguay, Brazil, and Bolivia (Simone 2006). It is most likely that this species occurs in the Paraguay and Amazon Rivers (G. Darrigran pers. comm. 2010)” 1 From NatureServe (2017): “The type locality for this species is the Rio Grande, Bolivia, but it is widely distributed in the Peruvian and Brazilian Amazon area […]” Status in the United States Benson (2018) reports Pomacea bridgesi as established in the U.S. territory of Puerto Rico and introduced but not established on the islands of Hawaii, Kauai, and Oahu in Hawaii. From Howells et al. (2006): “D.N. Shelton (Alabama Malacological Research Center, Mobile, personal communication, February 2005) reported that this species had been introduced into a park pond in Mobile [Alabama] in approximately 2003 and had maintained a minimal population there since that time.” “This popular aquarium species was first reported in Florida in the 1960s, but may have been present since the 1950s. It has been confirmed in Alachua (1981), Brevard (1971), Broward (1992), Dade (1973), Monroe, Palm Beach (1967), and Pinellas counties (Thompson 1984, Strange 1998). This species appears to be well established in Florida waters.” “P. bridgesii was found in the Brazos River, Waco, McClennan County [Texas] in January 2004 when two recently dead specimens were found during a low-water period and associated cold weather.” “Established populations of P.
    [Show full text]
  • Streptoneury Is Independent from Ontogenetic Torsion in the Caenogastropod Snail Marisa Cornuarietis
    Streptoneury Is Independent From Ontogenetic Torsion in the Caenogastropod Snail Marisa Cornuarietis J. Anton Morath University of Tübingen Stefan Fischer University of Tübingen Leonie Hannig University of Tübingen Simon Schwarz University of Tübingen Rita Triebskorn University of Tübingen Oliver Betz University of Tübingen Heinz-R. Köhler ( [email protected] ) Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany Research Article Keywords: snails’ anatomy, conspicuous crossing, streptoneury, developmental biology and evolution Posted Date: February 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-156111/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Streptoneury is independent from ontogenetic torsion in the caenogastropod snail Marisa cornuarietis J. Anton Morath1#, Stefan Fischer2,3#, Leonie Hannig1, Simon Schwarz1,4, Rita Triebskorn1,5, Oliver Betz2, Heinz-R. Köhler1* 1 Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany 2 Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany 3 Present address: Tübingen Structural Microscopy Core Facility, Applied Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, D-72076 Tübingen, Germany 4 Present address: German Environment Agency, Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany 5 Steinbeis-Transfer Center Ecotoxicology and Ecophysiology, Blumenstrasse 13, D-72108 Rottenburg, Germany # joint first authorship * Corresponding author: [email protected] A hallmark in snails’ anatomy is the conspicuous crossing of the pleurovisceral nerve cords present in all but the most derived gastropod clades.
    [Show full text]
  • Introduction to Mollusca and the Class Gastropoda
    Author's personal copy Chapter 18 Introduction to Mollusca and the Class Gastropoda Mark Pyron Department of Biology, Ball State University, Muncie, IN, USA Kenneth M. Brown Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA Chapter Outline Introduction to Freshwater Members of the Phylum Snail Diets 399 Mollusca 383 Effects of Snail Feeding 401 Diversity 383 Dispersal 402 General Systematics and Phylogenetic Relationships Population Regulation 402 of Mollusca 384 Food Quality 402 Mollusc Anatomy and Physiology 384 Parasitism 402 Shell Morphology 384 Production Ecology 403 General Soft Anatomy 385 Ecological Determinants of Distribution and Digestive System 386 Assemblage Structure 404 Respiratory and Circulatory Systems 387 Watershed Connections and Chemical Composition 404 Excretory and Neural Systems 387 Biogeographic Factors 404 Environmental Physiology 388 Flow and Hydroperiod 405 Reproductive System and Larval Development 388 Predation 405 Freshwater Members of the Class Gastropoda 388 Competition 405 General Systematics and Phylogenetic Relationships 389 Snail Response to Predators 405 Recent Systematic Studies 391 Flexibility in Shell Architecture 408 Evolutionary Pathways 392 Conservation Ecology 408 Distribution and Diversity 392 Ecology of Pleuroceridae 409 Caenogastropods 393 Ecology of Hydrobiidae 410 Pulmonates 396 Conservation and Propagation 410 Reproduction and Life History 397 Invasive Species 411 Caenogastropoda 398 Collecting, Culturing, and Specimen Preparation 412 Pulmonata 398 Collecting 412 General Ecology and Behavior 399 Culturing 413 Habitat and Food Selection and Effects on Producers 399 Specimen Preparation and Identification 413 Habitat Choice 399 References 413 INTRODUCTION TO FRESHWATER shell. The phylum Mollusca has about 100,000 described MEMBERS OF THE PHYLUM MOLLUSCA species and potentially 100,000 species yet to be described (Strong et al., 2008).
    [Show full text]
  • Trna Duplication and Remolding Within Animal Mitochondrial Genomes
    Changing identities: tRNA duplication and remolding within animal mitochondrial genomes Timothy A. Rawlings†‡, Timothy M. Collins†, and Ru¨ diger Bieler§ †Department of Biological Sciences, Florida International University, Miami, FL 33199; and §Department of Zoology (Invertebrates), Field Museum of Natural History, Chicago, IL 60605 Edited by Walter M. Fitch, University of California, Irvine, CA, and approved October 21, 2003 (received for review August 7, 2003) Although the majority of metazoan mitochondrial genomes remolding plays a role in the evolutionary dynamics of animal (mtDNAs) contain the same 37 genes, including 22 encoding mitochondrial genomes, however, remains unexplored. transfer RNAs (tRNAs), the recognition of orthologs is not always If remolding of mitochondrial tRNA genes has occurred straightforward. Here we demonstrate that inferring tRNA or- during metazoan evolution, one might expect the frequency of thologs among taxa by using anticodon triplets and deduced such events to be highest between: (i) tRNA genes that share secondary structure can be misleading: through a process of tRNA similar sequence and structural elements involved in recognition duplication and mutation in the anticodon triplet, remolded by their cognate aminoacyl-tRNA synthetase, and (ii) genes that leucine (LUUR) tRNA genes have repeatedly taken over the role of can change identity through a single point mutation in their anticodon triplet. Two tRNA genes that share these character- isoaccepting LCUN leucine tRNAs within metazoan mtDNA. In the present work, data from within the gastropods and a broad survey istics are the isoaccepting leucine tRNA (LCUN,LUUR) genes. of metazoan mtDNA suggest that tRNA leucine duplication and Although these tRNAs have different mRNA codon selectivities remolding events have occurred independently at least seven (LCUN with anticodon UAG recognizes four codons, CUA, CUG, CUC, and CUU, within mRNA transcripts; L with times within three major animal lineages.
    [Show full text]