Biogeography and Colonization History of Plethodontid Salamanders From

Total Page:16

File Type:pdf, Size:1020Kb

Biogeography and Colonization History of Plethodontid Salamanders From Journal of Biogeography (J. Biogeogr.) (2016) 43, 410–422 ORIGINAL Biogeography and colonization history ARTICLE of plethodontid salamanders from the Interior Highlands of eastern North America Samuel D. Martin1*, Donald B. Shepard2, Michael A. Steffen1, John G. Phillips1 and Ronald M. Bonett1 1Department of Biological Science, University ABSTRACT of Tulsa, 800 S. Tucker Drive, Tulsa, OK Aim The Interior Highlands (Ouachita Mountains and Ozark Plateau) are 74104, USA, 2Department of Biology, major physiographical regions of eastern North America and harbour many University of Central Arkansas, 201 Donaghey Ave., LSC 180, Conway, AR 72035, endemic species. Despite their close proximity, the Ozarks and Ouachitas have USA different geological histories and relatively distinct species pools. Few studies have tested the biogeographical origins of this region’s fauna, and most researchers have treated the Interior Highlands as a single unit. Here, we inferred the sources and timing of colonization of the Ozarks and the Ouachi- tas by analysing the biogeography of three genera of plethodontid salamanders (Eurycea, Plethodon and Desmognathus). Location Eastern North America. Methods We constructed a well-sampled, time-calibrated phylogeny for the family Plethodontidae using three mitochondrial and three nuclear genes in beast. Genetic data were primarily taken from GenBank, although we also pro- duced 76 novel sequences. Using lagrange, we reconstructed ancestral areas for North American plethodontids. We compared the frequency and timing of disper- sal events between the Ozarks and Ouachitas to other putative sources such as the Eastern Highlands (Appalachian Mountains and associated limestone plateaus). Results We inferred nine dispersal events from the Eastern Highlands to the Interior Highlands, and just two dispersal events between the geographically proximate Ozarks and Ouachitas. Following one dispersal in the Oligocene, other inter-highland dispersal events occurred in the Miocene and Pliocene, including two periods of near-synchronous movements. Main conclusions Given the relatively limited faunal exchange between the Ozarks and Ouachitas, we conclude that either the river valley separating the Ozarks and Ouachitas is a more formidable barrier to plethodontid salamander dispersal than barriers separating the Interior Highlands from the Eastern Highlands, or ecological/community contingencies have limited dispersal within the Interior Highlands. In our study, geographical proximity of upland islands does not correspond with faunal similarity. *Correspondence: Samuel D. Martin, Keywords Department of Biological Science, University of Amphibia, ancestral area reconstruction, Appalachian Mountains, comparative Tulsa, 800 S. Tucker Drive, Tulsa, OK 74104, biogeography, dispersal, Mississippi River, Ouachita Mountains, Ozark Pla- USA. E-mail: [email protected] teau, Plethodontidae, sky island (MacArthur & Wilson, 1963, 1967). The ages and connectiv- INTRODUCTION ity of ‘sky island’ habitats (Heald, 1951) have influenced the Dispersal among habitat islands generally becomes more dif- biodiversity of many organisms that are unable to disperse ficult with increasing isolation and decreasing island size across lower elevations (reviewed by McCormack et al., 410 http://wileyonlinelibrary.com/journal/jbi ª 2015 John Wiley & Sons Ltd doi:10.1111/jbi.12625 Dispersal by salamanders among North American highland areas 2009). Therefore, highland regions in geographical proximity and range continuity. However, in recent decades extensive should have more similar faunas (or more frequent gene DNA sequence data sets have been generated for eastern flow), while more distant regions should have less faunal North American plethodontids, as well as methods for diver- exchange. gence time estimation and ancestral area reconstruction The highland regions of eastern North America are major which can be used to better test these hypotheses. centres of endemism and diversity for many mesic-adapted Although the biogeography of eastern North American organisms, including amphibians (Duellman & Sweet, 1999), plethodontids has been analysed (Kozak et al., 2009; Bonett crayfishes (Crandall & Buhay, 2008) and freshwater fishes et al., 2014), previous authors treated the Ozarks and Oua- (Mayden, 1988). This is due to many factors, including their chitas as a single biogeographical unit (Interior Highlands), geological and climatic stability, complex topography and despite their distinct faunas. To date, no study has tested the drainage systems, abundant springs (limestone geology), and unique biogeographical origins of Ozark and Ouachita relatively consistent precipitation (Cross et al., 1986). The lar- plethodontid salamanders. Here, we construct a time-cali- gest highland region in eastern North America is the Eastern brated phylogenetic hypothesis for the family Plethodontidae Highlands, which includes the Appalachian Mountains and to infer the evolution of geographical ranges. From these adjacent uplands. reconstructions, we determine the geographical origins of Across the Mississippi River Valley to the west lie two Ozark and Ouachita plethodontids and compare the fre- smaller highland regions (Ouachita Mountains and Ozark quency of dispersal events among the three highland regions Plateau), referred to collectively as the Interior Highlands. of eastern North America. Lastly, we use divergence time The Ozark Plateau is a dissected limestone uplift, and the estimates to test for asynchrony of reconstructed dispersal Ouachita Mountains are a series of folded mountains, similar events. to the Appalachians but oriented on an east–west axis. Cur- rently separated by the Arkansas River Valley, these adjacent MATERIALS AND METHODS highlands were formed by disparate geological processes, but both date to the Ouachita orogeny during the Pennsylvanian Phylogenetic reconstruction (Thornbury, 1965), and have since weathered extensively. Therefore, these highlands pre-date the origin of plethodon- We sampled most recognized species of North American tid salamanders by at least 200 Myr (Mueller, 2006; Zhang & plethodontids, and several divergent lineages that potentially Wake, 2009; Bonett et al., 2014). Despite their geographical represent undescribed species, for a total of 230 terminal proximity (as close as ~38 km), the Ozarks and Ouachitas plethodontid taxa. We included two outgroup taxa, Rhya- have distinct faunas, with over 160 and 48 endemic species cotriton variegatus (Rhyacotritonidae) and Amphiuma respectively (Ouachita Ecoregional Assessment Team, The tridactylum (Amphiumidae; see Appendix S1 in Supporting Nature Conservancy, 2003; Ozarks Ecoregional Assessment Information for species authorities). These represent families Team, The Nature Conservancy, 2003). reconstructed as closely related to plethodontids in recent Few taxonomically broad studies concerning the origins of higher level molecular phylogenies of salamanders (Chippin- Interior Highland taxa have been conducted, although the dale et al., 2004; Wiens et al., 2006; Roelants et al., 2007; fish fauna was the subject of several influential (but primarily Zhang & Wake, 2009; Pyron & Wiens, 2011). We only sam- descriptive) works nearly three decades ago (Mayden, 1985, pled two to three representatives from each of the diverse 1987, 1988; Wiley & Mayden, 1985); Mayden (1985) also Central and South American plethodontid genera (tribe Boli- briefly discussed salamanders and crayfishes. Collectively, toglossini) because these in situ radiations would not impact these authors concluded that the Appalachians, Ozarks and our North American ancestral area reconstructions, and Ouachitas were contiguous until the Pleistocene, when they omitting them increased computational efficiency. We refer- were fragmented by glaciation and associated processes. In enced several published and unpublished intraspecific phylo- contrast, Crandall & Templeton (1999) found evidence for genies to inform our taxon sampling, and included multiple multiple episodes of dispersal and vicariance among highland representatives of species with particular relevance to our regions in the diverse crayfish genus Orconectes. reconstruction, especially species with geographically diver- In one of the first discussions of Interior Highland bio- gent lineages distributed in multiple regions. geography, Dowling (1956) noted that salamanders had the Our alignment included three mitochondrial genes: cyto- most informative distributions for reconstructing past bio- chrome b (Cytb), and NADH dehydrogenase subunits 2 geographical events, due to their strict habitat requirements (ND2) and 4 (ND4); and three nuclear genes: the recombina- and low dispersal abilities. This is especially pronounced in tion activating protein 1 gene (Rag1), pro-opiomelanocortin lungless salamanders of the family Plethodontidae. Dowling (POMC) and brain derived neurotrophic factor (BDNF). concluded that there were four primary colonizing elements, Most of the DNA sequences used were obtained from including what he considered a ‘pre-glacial’ group from the GenBank or other authors (716), but we also generated 74 Appalachians. As a rough metric to estimate timing of diver- novel sequences for this study following methods described gence, Dowling (1956) used taxonomic level (i.e. species ver- previously (Shepard & Burbrink, 2008; Bonett et al., 2014). sus subspecies), morphological and ecological differentiation, Newly generated sequences were deposited on GenBank (see Journal
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • Multi-National Conservation of Alligator Lizards
    MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science.
    [Show full text]
  • Assessing Environmental Variables Across Plethodontid Salamanders
    Lauren Mellenthin1, Erica Baken1, Dr. Dean Adams1 1Iowa State University, Ames, Iowa Stereochilus marginatus Pseudotriton ruber Pseudotriton montanus Gyrinophilus subterraneus Gyrinophilus porphyriticus Gyrinophilus palleucus Gyrinophilus gulolineatus Urspelerpes brucei Eurycea tynerensis Eurycea spelaea Eurycea multiplicata Introduction Eurycea waterlooensis Eurycea rathbuni Materials & Methods Eurycea sosorum Eurycea tridentifera Eurycea pterophila Eurycea neotenes Eurycea nana Eurycea troglodytes Eurycea latitans Eurycea naufragia • Arboreality has evolved at least 5 times within Plethodontid salamanders. [1] Eurycea tonkawae Eurycea chisholmensis Climate Variables & Eurycea quadridigitata Polygons & Point Data Eurycea wallacei Eurycea lucifuga Eurycea longicauda Eurycea guttolineata MAXENT Modeling Eurycea bislineata Eurycea wilderae Eurycea cirrigera • Yet no morphological differences separate arboreal and terrestrial species. [1] Eurycea junaluska Hemidactylium scutatum Batrachoseps robustus Batrachoseps wrighti Batrachoseps campi Batrachoseps attenuatus Batrachoseps pacificus Batrachoseps major Batrachoseps luciae Batrachoseps minor Batrachoseps incognitus • There is minimal range overlap between the two microhabitat types. Batrachoseps gavilanensis Batrachoseps gabrieli Batrachoseps stebbinsi Batrachoseps relictus Batrachoseps simatus Batrachoseps nigriventris Batrachoseps gregarius Preliminary results discovered that 71% of the arboreal species distribution Batrachoseps diabolicus Batrachoseps regius Batrachoseps kawia Dendrotriton
    [Show full text]
  • Supporting Information
    Supporting Information Rovito et al. 10.1073/pnas.0813051106 SI Text actively searching, and fewer collectors were probably involved. RT-PCR Batrachochytrium dendrobatidis Assay. This assay uses spe- The high estimates of search time and number of collectors were cies-specific primers ITS1–3 Chytr and 5.8S Chytr and the probe chosen to provide an extremely conservative estimate of ChytrMGB2 to amplify ITS-1 and 5.8S region (1). DNA was salamander encounter rate, to avoid reporting an artifact as a extracted by using the PrepMan Ultra protocol for DNA extrac- decline in encounter rate. Mean encounter rate per species in the tion (Applied Biosystems). DNA standards (provided by A. D. 1970s and from 2005 to 2007 was compared by using a t test (in Hyatt, Commonwealth Scientific and Industrial Research Or- cases of similar sample size) or a Wilcoxon test (in cases of ganisation, Geelong, Australia) were diluted to give 100, 10, and unequal sample sizes) for the highest site on the gradient and at Buena Vista, where sample sizes from 2005 to 2007 were 1 genome equivalents for use in Taqman assay (1). Results from sufficiently large for statistical analyses. the assay are presented quantitatively as the number of genomic Collections from the Buena Vista site were made primarily by equivalents or zoospore equivalents recovered from tissue from local collectors in the past who may have brought salamanders each specimen. from both the upper and lower cloud forest zones. These collectors consistently worked in the same areas, however, Analysis of Historical Field Note Data. The quantity and identifica- justifying the inclusion of these collecting events in a single site.
    [Show full text]
  • Dendrotriton) Sean M
    Journal of Biogeography (J. Biogeogr.) (2012) 39, 1251–1265 ORIGINAL Species formation and geographical ARTICLE range evolution in a genus of Central American cloud forest salamanders (Dendrotriton) Sean M. Rovito1,2*, David B. Wake1, Theodore J. Papenfuss1, Gabriela Parra-Olea2, Antonio Mun˜oz-Alonso3 and Carlos R. Va´squez-Almaza´n4 1Museum of Vertebrate Zoology, University of ABSTRACT California, Berkeley, CA 94720-3160, USA, Aim Montane Central America offers an ideal system for testing geographical 2Departamento de Zoologı´a, Instituto de Biologı´a, Universidad Nacional Auto´noma de hypotheses of species diversification. We examined how the complex geological Me´xico, AP 70-153 Me´xico, Distrito Federal history of Nuclear Central America has shaped the diversification of a genus of CP04510, Mexico, 3El Colegio de la Frontera cloud-forest-inhabiting salamanders (Dendrotriton). We applied parametric Sur (ECOSUR), San Cristobal de las Casas, models of geographical range evolution to determine the predominant mode of Chiapas, Mexico, 4Museo de Historia Natural, species formation within the genus and to test existing hypotheses of geographical Escuela de Biologı´a, Universidad de San Carlos species formation in the region. de Guatemala, Ciudad de Guatemala, Location Montane cloud forests of Nuclear Central America. Guatemala Methods We estimated a species tree for Dendrotriton using a multi-locus DNA sequence data set and several coalescent methods, and performed molecular dating for divergence events within the genus. We then applied the species-tree estimate to a likelihood-based time-stratified model of geographical range evolution, based on current species distributions and available geological information for Central America. Results Species trees from all methods contain two groups, one corresponding to species from the Sierra de los Cuchumatanes and the other containing all remaining species.
    [Show full text]
  • From Guatemala, with Miscellaneous Notes on Known Species
    CAMPBELL ET AL. NEW SALAMANDERS (CAUDATA: PLETHODONTIDAE) FROM GUATEMALA, WITH MISCELLANEOUS NOTES ON KNOWN SPECIES Jonathan A. CAMPBELL, ERIC N. SMITH, JEFFREY STREICHER, MANUEL E. ACEVEDO, and EDMUND D. BRODIE, JR. MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 200 Ann Arbor, October 13, 2010 ISSN 0076-8405 MISC. PUBL. MUS. ZOOL., UNIV. MICH., NO. 200 P U B L I C A T I O N S O F T H E MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 200 J. B. BURCH, Editor J. L. PAPPAS, Assistant Editor The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series—the Miscellaneous Publications and the Occasional Papers. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of these series; beginning in 1990 these are titled Special Publications and are numbered. All submitted manuscripts to any of the Museum’s publications receive external review. The Occasional Papers, begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are published separately. It is not intended that they be grouped into volumes.
    [Show full text]
  • Northern Region MESOAMERICA BIODIVERSITY HOTSPOT
    Ecosystem Profile Northern Region Of The MESOAMERICA BIODIVERSITY HOTSPOT Belize, Guatemala, Mexico Final version January 15, 2004 TABLE OF CONTENTS INTRODUCTION ..........................................................................................................................1 THE ECOSYSTEM PROFILE.......................................................................................................1 BACKGROUND............................................................................................................................2 Biological Importance.............................................................................................................................. 2 Socioeconomic Context........................................................................................................................... 3 Progress in Conserving Biodiversity........................................................................................................ 4 CONSERVATION OUTCOMES ...................................................................................................5 Species Outcomes .................................................................................................................................. 6 Site Outcomes......................................................................................................................................... 7 Prioritization of the Key Biodiversity Areas.............................................................................................. 7 Corridor
    [Show full text]
  • Supporting Information Tables
    Mapping the Global Emergence of Batrachochytrium dendrobatidis, the Amphibian Chytrid Fungus Deanna H. Olson, David M. Aanensen, Kathryn L. Ronnenberg, Christopher I. Powell, Susan F. Walker, Jon Bielby, Trenton W. J. Garner, George Weaver, the Bd Mapping Group, and Matthew C. Fisher Supplemental Information Taxonomic Notes Genera were assigned to families for summarization (Table 1 in main text) and analysis (Table 2 in main text) based on the most recent available comprehensive taxonomic references (Frost et al. 2006, Frost 2008, Frost 2009, Frost 2011). We chose recent family designations to explore patterns of Bd susceptibility and occurrence because these classifications were based on both genetic and morphological data, and hence may more likely yield meaningful inference. Some North American species were assigned to genus according to Crother (2008), and dendrobatid frogs were assigned to family and genus based on Grant et al. (2006). Eleutherodactylid frogs were assigned to family and genus based on Hedges et al. (2008); centrolenid frogs based on Cisneros-Heredia et al. (2007). For the eleutherodactylid frogs of Central and South America and the Caribbean, older sources count them among the Leptodactylidae, whereas Frost et al. (2006) put them in the family Brachycephalidae. More recent work (Heinicke et al. 2007) suggests that most of the genera that were once “Eleutherodactylus” (including those species currently assigned to the genera Eleutherodactylus, Craugastor, Euhyas, Phrynopus, and Pristimantis and assorted others), may belong in a separate, or even several different new families. Subsequent work (Hedges et al. 2008) has divided them among three families, the Craugastoridae, the Eleutherodactylidae, and the Strabomantidae, which were used in our classification.
    [Show full text]
  • Volume 2, Chapter 14-8: Salamander Mossy Habitats
    Glime, J. M. and Boelema, W. J. 2017. Salamander Mossy Habitats. Chapt. 14-8. In: Glime, J. M. Bryophyte Ecology. Volume 2. 14-8-1 Bryological Interaction.Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 14-8 SALAMANDER MOSSY HABITATS Janice M. Glime and William J. Boelema TABLE OF CONTENTS Tropical Mossy Habitats – Plethodontidae........................................................................................................ 14-8-3 Terrestrial and Arboreal Adaptations ......................................................................................................... 14-8-3 Bolitoglossa (Tropical Climbing Salamanders) ......................................................................................... 14-8-4 Bolitoglossa diaphora ................................................................................................................................ 14-8-5 Bolitoglossa diminuta (Quebrada Valverde Salamander) .......................................................................... 14-8-5 Bolitoglossa hartwegi (Hartweg's Mushroomtongue Salamander) ............................................................ 14-8-5 Bolitoglossa helmrichi ............................................................................................................................... 14-8-5 Bolitoglossa jugivagans ............................................................................................................................
    [Show full text]
  • Melissa Ojeda
    Salamandras Endémicas para la Región de Guatemala ORDEN CAUDATA-SALAMANDRAS FAMILIA PLETHODONTIDAE Recopilación por Melisa Ojeda® Programa EDC-integrado (2005-2006) Escuela de Biología Universidad de San Carlos de Guatemala 2 Género Bolitoglossa Duméril, Bibron, and Duméril, 1854 Bolitoglossa cuchumatana (Stuart, 1943) Distribución Las tierras altas del noroeste de Guatemala en la Sierra de Los Cuchumatanes. Se conoce en los departamentos de Quiché y Huehuetenango en elevaciones de 1200 a 2500 msnm. En área herpetológica Cuchumatana. Hábitat y Hábitos Habita en bosques nubosos y bosque de pino-encino. Los individuos se han encontrado en el suelo, bajo troncos, y en bromelias epífitas. Puede sobrevivir en hábitats degradados. Presenta desarrollo directo y no depende del agua. Mapa de distribución 3 Bolitoglossa dofleini (Werner, 1903) Distribución Vertiente del Atlántico de Guatemala, el Distrito de Cayo en Belice, y a poca distancia de las montañas del noroeste en Honduras. En Guatemala, la especie se conoce de las cuestas atlánticas de Alta Verapaz, las Montañas del Mico, y la Sierra de Merendón. La distribución altitudinal es desde el nivel del mar hasta 1300 msnm. Áreas herpetológicas de Petén, Quecchi, Mico, Maya y de Merendón. Longitud 180mm Hábitat y Hábitos Habita en bosque húmedo premontano, incluyendo en hábitats perturbados como plantaciones de cardamomo. Las hembras tienden a vivir en el suelo bajo troncos; los machos son arborícolas. Presentan desarrollo directo y no son dependientes del agua. Estado Poblacional Es extremadamente común en algunos lugares con rango de distribución restringido. Mapa de distribución 4 Bolitoglossa dunni (Schmidt, 1933) Distribución Montañas del este de Guatemala, noreste de El Salvador y oeste de Honduras.
    [Show full text]
  • AARK Amphibian Conservation Planning Tool (Guatemala) (Español)
    Herramienta para Evaluar las Necesidades de Conservación de Anfibio, Guatemala, Febrero, 2010 Page 1 Especie en el Rol de Conservación In Situ 42 especies Una especie para la cual la mitigación efectiva de las amenazas en la naturaleza puede resultar en un programa exitoso de conservación. Hábitat Especies Mitigación de amenazas Comentarios Protegido Hyla bocourti Las amenazas no son reversibles ni No Considerada ya como especie extinta. serán revertidas a tiempo Plectrohyla tecunumani Las amenazas no son reversibles ni No Esta especie fue colectada alrededor de 1995 en una cueva en todos santos, serán revertidas a tiempo luego se colectaron renacuajos en el 2003, y en el 2009 no se encontraron ni renacuajos ni adultos. Se consiera esta especie extinta (Jonathan Campbell, Manuel Acevedo, Jacobo Conde). Pseudoeurycea brunnata Las amenazas no son reversibles ni No No ha sido encontrada desde 1978. serán revertidas a tiempo Pseudoeurycea exspectata Las amenazas no son reversibles ni No serán revertidas a tiempo Dendrotriton bromeliacius Las amenazas no son reversibles ni No serán revertidas a tiempo Dendrotriton cuchumatanus Las amenazas no son reversibles ni No Esta especie fue colectada alrededor de 1995 en una cueva en todos santos, serán revertidas a tiempo luego se colectaron renacuajos en el 2003, y en el 2009 no se encontraron ni renacuajos ni adultos. Se consiera esta especie extinta (Campbell, Manuel Acevedo, Jacobo Conde). Dendrotriton rabbi Las amenazas no son reversibles ni No Destrucción de su hábitat especialmente bromelias la pone en riesgo (Ted serán revertidas a tiempo Papenfuss y Carlos Vásquez). Craugastor trachydermus Las amenazas no son reversibles ni No serán revertidas a tiempo Bromeliohyla bromeliacia Las amenazas no son reversibles ni No En la década de 1970 era demasiado común, actualente es muy difícil de serán revertidas a tiempo encontrar (Jonathan Campbell).
    [Show full text]