Mid-Pleistocene Extinction of Deep-Sea Ostracoda?
Total Page:16
File Type:pdf, Size:1020Kb
Mid-Pleistocene Extinction of Deep-Sea Ostracoda? A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Geology at the University of Canterbury By Frances J. Gaiger July 2006 Scanning Electron Microscope image of Bradleya sp. aff. silentium from Pleistocene sample, ODP Site 1125. Bradleya is a key genus in terms of our understanding of the induction of shallow water species into the abyss A BSTRACT A global extinction event has been documented in protozoan foraminifera in the late Pliocene to Pleistocene. The timing of the extinction event varied depending on location, however for Ocean Drilling Project Site 1125, disappearances occurred between 2.5 and 0.57 Ma, with the major decline approximately 1.1 Ma. In order to determine if this event affected benthic organisms other than protozoans, this study was undertaken to determine how podocopid ostracods (Crustacea) recovered Ocean Drilling Program Site 1125 responded. The present study was hindered by the small number of valves recovered; the fact that a large proportion of taxa found were undescribed and new to science; and the current state of taxonomic scheme that is under significant revision. These factors meant that a comprehensive comparison could not be achieved. Despite this, counts of ostracod valves and assessments of diversity from this study reveal a significant increase in both parameters from approximately 900-600 ka. Three possible causes were investigated to account for this increase, sediment type and sample size; affects of taphonomy, mainly dissolution; or an actual biotic ‘event’. Statistical analyses showed that although sample size did have some effect, it was not the sole reason for the increase in ostracod numbers. Dissolution had an expected affect on the percentage of juveniles but no correlations were found with other sample characteristics. Sedimentation rate was investigated but this also proved unrelated. Therefore, it is suggested that the increase in total ostracod valves and diversity which occurs between 900 and 600 ka was in fact a natural, biotic ‘event’. This preliminary evidence suggests that an oceanographic event that has negatively impacted on the foraminifers has had the reverse affect on the ostracod assemblage, in the sense that both population size and diversity increase during that time. T ABLE OF C ONTENTS Title Page..........................................................................i Frontispiece .....................................................................ii Abstract ..........................................................................iii Table of Contents ............................................................ iv List of Figures................................................................vii List of Tables .................................................................. ix Acknowledgments............................................................. x CHAPTER 1 Introduction 1.1 Research Objectives....................................................................................1 1.2 Marine Ostracoda.......................................................................................2 1.3 Chatham Rise tectonic and sedimentation history ..................................4 1.4 Oceanography .............................................................................................9 1.5 Paleoceanography .....................................................................................12 1.6 Ocean Drilling Program core 1125..........................................................13 1.7 Chronostratigraphy ..................................................................................17 1.8 Stilostomella Extinction Event .................................................................20 CHAPTER 2 Methods 2.1 Core drilling and subsampling ................................................................23 2.2 Sample preparation and picking .............................................................25 2.3 Scanning Electron Microscopy ................................................................27 2.4 Transmitted Light Microscopy................................................................29 2.5 Assessment of dissolution .........................................................................30 2.6 Statistical analyses....................................................................................31 2.7 Cataloguing of specimens and sample residues......................................32 iv CHAPTER 3 Taxonomy 3.1 Systematics.................................................................................................33 Cytherella sp. a ..........................................................................33 Cytherella sp. b..........................................................................33 Bythocypris sp. ..........................................................................34 Propontocypris sp......................................................................34 Argilloecia sp.............................................................................34 Cytheropteron sp. aff. dibolos...................................................35 Cytheropteron sp. aff. garganicum...........................................35 Cytheropteron sp. aff. quadrata................................................36 Cytheropteron posteroreticulata...............................................36 Cytheropteron sianae ................................................................37 Cytheropteron testudo SARS 1869.............................................37 Cytheropteron sp. aff. sp. 1 AYRESS 1996 ................................39 Cytheropteron sp. a ...................................................................39 Cytheropteron n. sp. ..................................................................39 Cluthia sp. a...............................................................................40 Cluthia sp. b...............................................................................40 Taracythere n.sp........................................................................41 Legitimocythere sp. ...................................................................41 Apatihowella sp. ........................................................................41 Fallacihowella sp. aff. F. sp. a MAZZINI ...................................42 Philoneptunus provocator ........................................................42 Ambocythere sp. aff. recta.........................................................43 Rugocythereis horrida ..............................................................43 Bradleya opima. ........................................................................44 Bradleya pelasgica ....................................................................44 Bradleya perforata ....................................................................45 Bradleya pygmaea.....................................................................45 Bradleya sp. aff. silentium ........................................................46 Bradleya n. sp. a ........................................................................46 Poseidonamicus major..............................................................47 Pseudeucythere n.sp..................................................................47 Krithe sp. a.................................................................................48 Krithe sp. b.................................................................................48 Krithe sp. c.................................................................................48 Krithe sp. d.................................................................................49 Parakrithe sp. ............................................................................49 Xestoleberis sp...........................................................................50 CHAPTER 4 Results and Discussion 4.1 Ostracod dominance and diversity..........................................................51 4.2 Sampling problems...................................................................................54 v 4.3 Dissolution and taphonomy......................................................................58 4.4 Taxonomy ..................................................................................................64 4.4.1 Cythereis/Philoneptunus............................................................66 4.4.2 Cytheropteron testudo................................................................67 4.4.3 Adult versus juvenile valves.......................................................67 4.5 Benthic ostracods and the MPT...............................................................69 CHAPTER 5 Conclusions 5.1 Conclusions................................................................................................73 References...................................................................... 76 Plates 1-8 ....................................................................... 82 APPENDICES Appendix 1 – Introduction 1.1 Macroscopic tephra for ODP 1125..........................................................90 1.2 Nannofossil datum levels for ODP 1125..................................................91 1.3 Significant foraminiferal and bolboformid datums for ODP 1125 ......92 Appendix 2 -Methods 2.1 Details from ODP Site 1125 samples used in this study ........................90 2.2 Database of all picked specimens.............................................................91