An Updated Classification of the Recent Crustacea

Total Page:16

File Type:pdf, Size:1020Kb

An Updated Classification of the Recent Crustacea An Updated Classification of the Recent Crustacea By Joel W. Martin and George E. Davis Natural History Museum of Los Angeles County Science Series 39 December 14, 2001 AN UPDATED CLASSIFICATION OF THE RECENT CRUSTACEA Cover Illustration: Lepidurus packardi, a notostracan branchiopod from an ephemeral pool in the Central Valley of California. Original illustration by Joel W. Marin. AN UPDATED CLASSIFICATION OF THE RECENT CRUSTACEA BY JOEL W. M ARTIN AND GEORGE E. DAVIS NO. 39 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY John Heyning, Deputy Director for Research and Collections John M. Harris, Committee Chairman Brian V. Brown Kenneth E. Campbell Kirk Fitzhugh Karen Wise K. Victoria Brown, Managing Editor Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on 14 December 2001 Printed in the United States of America PREFACE For anyone with interests in a group of organisms such knowledge would shed no light on the actual as large and diverse as the Crustacea, it is difficult biology of these fascinating animals: their behavior, to grasp the enormity of the entire taxon at one feeding, locomotion, reproduction; their relation- time. Those who work on crustaceans usually spe- ships to other organisms; their adaptations to the cialize in only one small corner of the field. Even environment; and other facets of their existence though I am sometimes considered a specialist on that fall under the heading of biodiversity. crabs, the truth is I can profess some special knowl- By producing this volume we are attempting to edge about only a relatively few species in one or update an existing classification, produced by Tom two families, with forays into other groups of crabs Bowman and Larry Abele (1982), in order to ar- and other crustaceans. Crabs are but a small picture range and update the Crustacea collection of the of the overall diversity of the Crustacea. They rep- Natural History Museum of Los Angeles County. resent only one infraorder [Brachyura] within one This enormous and diverse collection contains an order [Decapoda] within one superorder [Eucarida] estimated four to five million specimens, making it within one subclass [Eumalacostraca] within one the second largest collection of Crustacea in the class [Malacostraca] of the six currently recognized Americas. While undertaking this task, it occurred classes of the Crustacea (as depicted herein). I am to us that others might benefit from our efforts, and certain that this situation is similar for all other that perhaps a general update on the number and crustacean systematists, with the result that there arrangement of the living crustacean families, along are no living specialists who can truly claim to have with an explanation of the systematic and classifi- an in-depth understanding of the Crustacea as a catory changes suggested during the last two de- whole. cades, might be a welcome addition to the litera- This volume is an attempt to provide the reader, ture. I hope this volume is seen as nothing more whether a seasoned systematist or a beginning stu- than the briefest of introductions into an under- dent, with a glimpse into the enormous variety of standing of crustaceans and that it might lead to extant crustaceans. The sheer number of categories further work not only on the relationships among that humans have constructed to contain and order crustaceans but also toward understanding the this group is some indication of the incredible overall picture of crustacean biodiversity and nat- amount of morphological diversity they exhibit. ural history. But this is only a small part of the overall picture. Joel W. Martin Even if one were to grasp the full range of taxo- June 2001 nomic diversity as presented in this classification, Los Angeles, California ACKNOWLEDGMENTS We sincerely thank the many carcinologists to pods; Gary Poore for information and literature on whom we sent earlier versions of the classification several peracarid and decapod groups and for his (all of whom are listed in Appendix II). Although detailed review of our penultimate draft; Robert not all of these persons responded to our queries Hessler for providing needed literature and for his (we had a response rate of approximately 60% to insightful suggestions; and Lipke Holthuis for sug- the first mailing and approximately 70% to the sec- gesting corrections to several taxonomic authorities ond) and some saw only later versions, we felt it and dates in our earlier versions. Obviously, not all appropriate to list all persons from whom com- of the suggestions we received were incorporated, ments were solicited. Drs. Rodney Feldmann and in part because some suggested changes contradict- Geoffrey Boxshall, in addition to commenting on ed others and in part because some suggested sections of the classification, served as external ref- changes would have involved major rearrange- erees for the entire manuscript, and to both we are ments for which we deemed the evidence insuffi- extremely grateful. We mourn the loss of Erik Dahl cient or incomplete. Inclusion of crustacean-related in January 1999, of Mihai Ba˘cescu in August 1999, web sites as an appendix was the idea of Keith of Arthur Humes and Austin Williams in October Crandall. We thank Todd Zimmerman, Regina 1999, of Gary Brusca and Ray Manning in January Wetzer, Todd Haney, and Sandra Trautwein in our 2000, of The´odore Monod in November 2000, and Los Angeles crustacean laboratory for suggestions of Denton Belk in April 2001, during the compi- and assistance at various points; Regina Wetzer in lation of this classification. Their absence is keenly particular was instrumental in assembling Appen- dix III. felt by all carcinologists. Deserving of special rec- We thank the Natural History Museum of Los ognition are David K. Camp for supplying much Angeles County, and especially John Heyning, John needed information and literature for a wide vari- Harris, and the members of the Scientific Publica- ety of taxa; Anne C. Cohen for literature on ostra- tions Committee, for support and for assistance codes and maxillopods and for enlightening discus- with readying the manuscript for publication. We sions of that group’s presumed monophyly; William also thank the National Science Foundation for Newman and Mark Grygier, both of whom provid- partial support via grants DEB 9020088, DEB ed literature and enlightening comments on maxil- 9320397, and DEB 9727188 to J. W. Martin; NSF lopods; Mark Grygier for additional comments on Biotic Surveys and Inventories grant DEB 9972100 interpretation of ICZN recommendations; Trisha to T. L. Zimmerman and J. W. Martin; and NSF Spears and Cheryl Morrison for providing unpub- PEET grant DEB 9978193 to J. W. Martin and D. lished molecular sequence or gene rearrangement K. Jacobs. Finally, we sincerely thank Sue, Alex, data for the decapods; Geoffrey Fryer for his al- and Paul Martin and Ruthe Davis for their kind ways direct comments concerning the branchio- encouragement and understanding. CONTENTS Preface ......................................................................................................................... v Acknowledgments ......................................................................................................... vii General Introduction....................................................................................................... 1 Methods ................................................................................................................... 3 Names, Dates, and the ICZN......................................................................................... 3 Cladistics and Classification of the Crustacea ..................................................................... 5 Molecular Systematics and Classification of the Crustacea ..................................................... 7 Developmental Genetics and Classification of the Crustacea ................................................... 8 Sperm Morphology and Classification of the Crustacea......................................................... 8 Larval Morphology and Classification of the Crustacea......................................................... 9 The Fossil Record and Classification of the Crustacea.......................................................... 10 A Note on the Appendices ........................................................................................... 10 Rationale .................................................................................................................... 12 Concluding Remarks...................................................................................................... 57 Classification of the Recent Crustacea ................................................................................ 58 Literature Cited ............................................................................................................ 76 Appendix I: Comments and Opinions............................................................................... 102 Appendix II: List of Contributors .................................................................................... 114 Appendix III: Other Crustacean Resources......................................................................... 115 An Updated Classification of the Recent Crustacea By JOEL W. M ARTIN1 AND GEORGE E. DAVIS1 ABSTRACT. An updated classification of the Crustacea down
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts)
    Collection Review Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts) Gary C. B. Poore1*, Niel L. Bruce2,3 1 Museum Victoria, Melbourne, Victoria, Australia, 2 Museum of Tropical Queensland and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia, 3 Department of Zoology, University of Johannesburg, Auckland Park, South Africa known from the supralittoral and intertidal to depths in excess of Abstract: The crustacean order Isopoda (excluding six kilometres. Isopods are a highly diverse group of crustaceans, Asellota, crustacean symbionts and freshwater taxa) with more than 10,300 species known to date, approximately comprise 3154 described marine species in 379 genera 6,250 of these being marine or estuarine. In the groups under in 37 families according to the WoRMS catalogue. The discussion here (about half the species) the vast majority of species history of taxonomic discovery over the last two centuries are known from depths of less than 1000 metres. is reviewed. Although a well defined order with the Peracarida, their relationship to other orders is not yet The Isopoda is one of the orders of peracarid crustaceans, that resolved but systematics of the major subordinal taxa is is, those that brood their young in a marsupium under the body. relatively well understood. Isopods range in size from less They are uniquely defined within Peracarida by the combination than 1 mm to Bathynomus giganteus at 365 mm long. of one pair of uropods attached to the pleotelson and pereopods of They inhabit all marine habitats down to 7280 m depth only one branch. Marine isopods are arguably the most but with few doubtful exceptions species have restricted morphologically diverse order of all the Crustacea.
    [Show full text]
  • On the Current State of Taxonomy of the Baikal Lake Amphipods (Crustacea: Amphipoda) and the Typological Ways of Constructing Their System
    Arthropoda Selecta 28(3): 374–402 © ARTHROPODA SELECTA, 2019 On the current state of taxonomy of the Baikal Lake amphipods (Crustacea: Amphipoda) and the typological ways of constructing their system Î ñîâðåìåííîì ñîñòîÿíèè òàêñîíîìèè áàéêàëüñêèõ àìôèïîä (Crustacea: Amphipoda) è òèïîëîãè÷åñêîì ñïîñîáå ïîñòðîåíèÿ èõ ñèñòåìû V.V. Takhteev1, 2 Â.Â. Òàõòååâ1, 2 1 Department of Biological and Soil Science at Irkutsk State University, Karl Marx St. 1, Irkutsk 664003, Russia. E-mail: [email protected] 1 Иркутский государственный университет, биолого-почвенный факультет, ул. К. Маркса, 1, Иркутск 664003, Россия. E-mail: [email protected] 2 Baikal Museum of Irkutsk Scientific Center SB RAS, Akademicheskaya St. 1, Listvyanka Settl., Irkutsk Region 664520, Russia. 2 Байкальский Музей Иркутского научного центра Сибирского отделения Российской академии наук, ул. Академическая, 1, пос. Листвянка Иркутской обл. 664520, Россия. KEY WORDS: amphipods, Lake Baikal, taxonomy, taxonomic inflation, archetype, core, deviations, estab- lishment of families. КЛЮЧЕВЫЕ СЛОВА: амфиподы, озеро Байкал, таксономия, таксономическая инфляция, архетип, ядро, отклонения, установление семейств. Editorial note On the publication “On the current state of taxonomy of the Baikal Lake amphipods (Crustacea, Amphipoda) and the typological ways of constructing their system” by V.V. Takhteev In this issue we present an extensive article prepared by Prof. Vadim V. Takhteev, which is based on his long time effort in the study of diversity of amphipods in Lake Baikal and its watershed. This paper is highly polemical and may even seem either archaic or heretical in the time of domination of the phylogenetic paradigms in systematics. The author advocates classical morphological taxonomy, which own tradition, methods (disregarding whether we call it typology or not) and the language are significantly older than the modern phylogenetic approach.
    [Show full text]
  • The Species of Sand Crabs in the Genus Lepidopa (Decadopa: Albuneidae) by I W E
    Zool. Anz., Leipzig 186 (1971) 1/2, S. 59-102 The Species of Sand Crabs in the Genus Lepidopa (Decadopa: Albuneidae) By I w E. Ei Foai)1 Willi 12 Figures (Kingegangen am 10. bebruar 1970) This [taper eonlains a review of liie species in (fie genus Lepidopa and descriptions of six new species. The evolutionary relationship between the species is discussed with particular reference to geographical distribution and to the closure of the sea connection across Central America in the late Pliocene. 1 Prof. Dr. Ian E. Efford, Institute of Animal Resource Ecology, Department of Zoo- logy, University of British Columbia, Vancouver 8, British Columbia (Canada). 60 I. K. h]f'l'ord, The Species of Sand Crabs in llie Genus Lepidopa TIOT.THUIS (19G.1, 19G2) has recently reviewed the eighteenth and early nineleenlli century literature dealing with the genus Lepidopa and he concluded that EAUIUCUTS (1793) and DKSMAREST (1825) in their descriptions of Albunca scutellala were dealing with llie hrachyuran crah, Th'ui scutellala and not with a species [hat other authors have assigned to the genus Lepidopa. Thus the first published description of a crab that can definilelv be assigned to the genus Lepidopa is II. MII.NI: EDWAIIDS' (1837) description of Albunca scu- 1 dial a. IIOLTIIUIS (1961) suggested that tliis was probably a specimen of T.epidopa rich- niondi but recently I examined an individual of Lepidopa hcnedicli in the Paris Museum that is probably MILNE EDWARDS' original specimen. The label reads 'Lepidopa sciitellata type?' and, according to Dr. J. FOREST, was written by BOCVIKR; however, the specimen is much older than this label and agrees closely wilh \ 111 \i KDWAHDS' original figure.
    [Show full text]
  • Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
    Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop.
    [Show full text]
  • Journal of Natural History
    This article was downloaded by:[Smithsonian Trpcl Res Inst] On: 24 July 2008 Access Details: [subscription number 790740476] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Natural History Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713192031 New species and records of anthuridean isopod crustaceans from the Indian Ocean Brian Kensley a; Marilyn Schotte a a Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA. Online Publication Date: 01 November 2000 To cite this Article: Kensley, Brian and Schotte, Marilyn (2000) 'New species and records of anthuridean isopod crustaceans from the Indian Ocean', Journal of Natural History, 34:11, 2057 — 2121 To link to this article: DOI: 10.1080/002229300750022358 URL: http://dx.doi.org/10.1080/002229300750022358 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Crustacea: Peracarida: Tanaidacea: Apseudomorpha), with Descriptions of a New Genus and Six New Species
    Zootaxa 3734 (4): 401–441 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3734.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:00DC3ED7-62FD-4D99-ABCC-0DC57D1A51E7 Tanaidaceans from Brunei, IV. The Families Kalliapseudidae, Pagurapseudopsi- dae, Parapseudidae and Apseudidae (Crustacea: Peracarida: Tanaidacea: Apseudomorpha), with descriptions of a new genus and six new species ROGER N. BAMBER ARTOO Marine Biology Consultants, Ocean Quay Marina, Belvidere Road, Southampton SO14 5QY, United Kingdom. E-mail: [email protected] Abstract Apseudomorph tanaidaceans from recent samples of the South China Sea benthos off Brunei have been examined. The habitats were sandy substrata from between 5 and 90 m depth. Fourteen species of the four families considered here were discovered. A new species of Tanapseudes is described. The distribution of Phoxokalliapseudes gobinae is analyzed. Biropalostoma goofi is recorded for the first time in Brunei waters. One new species of the Apseudidae (in the genus Bunakenia) and four new species of the Parapseudidae (one each in the genera Platylicoa and Pakistanapeudes, and two in a new genus Actenos, of the subfamily Pakistanapseudinae) are described. The genus Platylicoa is moved to the Pakistanapseudinae, and the genus Hainanius is returned to the Parapseudidae (Parapseudinae). Apseudes tenuicorporeus is moved from Biropalostoma to the new pakistanapseudin genus described herein. Key words: Tanaidacea, Pagurapseudidae, Kalliapseudidae, Parapseudidae, Apseudidae, Actenos, Aponychos, Apseudopsis, Bilobatus, Biropalostoma, Bunakenia, Mendamanus, Pakistanapseudes, Pagurapseudopsis, Phoxokalliapseudes, Platylicoa, Tanapseudes, South China Sea Introduction This paper is the fourth on the South China Sea tanaidacean fauna of the waters off Brunei.
    [Show full text]
  • Amphipod Newsletter 39 (2015)
    AMPHIPOD NEWSLETTER 39 2015 Interviews BIBLIOGRAPHY THIS NEWSLETTER PAGE 19 FEATURES INTERVIEWS WITH ALICJA KONOPACKA AND KRZYSZTOF JAŻDŻEWSKI PAGE 2 MICHEL LEDOYER WORLD AMPHIPODA IN MEMORIAM DATABASE PAGE 14 PAGE 17 AMPHIPOD NEWSLETTER 39 Dear Amphipodologists, Statistics from We are delighted to present to you Amphipod Newsletter 39! this Newsletter This issue includes interviews with two members of our amphipod family – Alicja Konopacka and Krzysztof Jazdzewski. Both tell an amazing story of their lives and work 2 new subfamilies as amphipodologists. Sadly we lost a member of our amphipod 21 new genera family – Michel Ledoyer. Denise Bellan-Santini provides us with a fitting memorial to his life and career. Shortly many 145 new species members of the amphipod family will gather for the 16th ICA in 5 new subspecies Aveiro, Portugal. And plans are well underway for the 17th ICA in Turkey (see page 64 for more information). And, as always, we provide you with a Bibliography and index of amphipod publications that includes citations of 376 papers that were published in 2013-2015 (or after the publication of Amphipod Newsletter 38). Again, what an amazing amount of research that has been done by you! Please continue to notify us when your papers are published. We hope you enjoy your Amphipod Newsletter! Best wishes from your AN Editors, Wim, Adam, Miranda and Anne Helene !1 AMPHIPOD NEWSLETTER 39 2015 Interview with two prominent members of the “Polish group”. The group of amphipod workers in Poland has always been a visible and valued part of the amphipod society. They have organised two of the Amphipod Colloquia and have steadily provided important results in the world of amphipod science.
    [Show full text]
  • Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans - How Far Have We Come?
    The University of Southern Mississippi The Aquila Digital Community Faculty Publications 4-1-2012 Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans - How Far Have We Come? Gary Anderson University of Southern Mississippi, [email protected] Magdalena Blazewicz-Paszkowycz University of Łódź, [email protected] Roger Bamber Artoo Marine Biology Consultants, [email protected] Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the Marine Biology Commons Recommended Citation Anderson, G., Blazewicz-Paszkowycz, M., Bamber, R. (2012). Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans - How Far Have We Come?. PLoS One, 7(4), 1-11. Available at: https://aquila.usm.edu/fac_pubs/160 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Diversity of Tanaidacea (Crustacea: Peracarida) in the World’s Oceans – How Far Have We Come? Magdalena Blazewicz-Paszkowycz1*, Roger Bamber2, Gary Anderson3 1 Department of Polar Biology and Oceanobiology, University of Ło´dz´,Ło´dz´, Poland, 2 Artoo Marine Biology Consultants, Ocean Quay Marina, Southampton, Hants, United Kingdom, 3 Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America Abstract Tanaidaceans are small peracarid crustaceans which occur in all marine habitats, over the full range of depths, and rarely into fresh waters. Yet they have no obligate dispersive phase in their life-cycle. Populations are thus inevitably isolated, and allopatric speciation and high regional diversity are inevitable; cosmopolitan distributions are considered to be unlikely or non-existent.
    [Show full text]
  • Does Biogeography Have a Future in a Globalized World with Globalized Faunas?
    Contributions to Zoology, 77 (2) 127-133 (2008) Does biogeography have a future in a globalized world with globalized faunas? Frederick R. Schram Burke Museum, University of Washington, Seattle, P.O. Box 1567, Langley, WA 98260, USA, [email protected] ton.edu Key words: Anaspidacea, Bathynellacea, globalization, historical biogeography, vicariance Abstract in the Great Lakes and it is said that a new invader species is identified every eight months. The toll on The study of biogeography was once a pillar of evolution the fisheries of the Great Lakes alone has been dev- science. Both Darwin and especially Wallace found great in- astating. Another example is San Francisco Bay, spiration from the consideration of animal distributions. where some 234 invasive species have been recorded However, what is to happen to this discipline in a time of global trade, mass movement of people and goods, and the up to the present day, i.e., something like 90% of the resulting globalization of the planet’s biota? Can we still aquatic population of the bay. Finally, the infamous hope to delve into the fine points of past geography as it af- Chinese mitten crab, Eriocheir sinensis, is conduct- fected animal and plant evolution? Maybe we can, but only ing an on-going assault on Chesapeake Bay, and the with careful study of life forms that suffer minimal affects effect on the native blue crab populations is already – at present – from globalization, viz., marginal faunas of being measured. In the United States, invading ar- quite inaccessible environments. Two examples taken from syncarid crustaceans illustrate this point.
    [Show full text]
  • Crustaceans Topics in Biodiversity
    Topics in Biodiversity The Encyclopedia of Life is an unprecedented effort to gather scientific knowledge about all life on earth- multimedia, information, facts, and more. Learn more at eol.org. Crustaceans Authors: Simone Nunes Brandão, Zoologisches Museum Hamburg Jen Hammock, National Museum of Natural History, Smithsonian Institution Frank Ferrari, National Museum of Natural History, Smithsonian Institution Photo credit: Blue Crab (Callinectes sapidus) by Jeremy Thorpe, Flickr: EOL Images. CC BY-NC-SA Defining the crustacean The Latin root, crustaceus, "having a crust or shell," really doesn’t entirely narrow it down to crustaceans. They belong to the phylum Arthropoda, as do insects, arachnids, and many other groups; all arthropods have hard exoskeletons or shells, segmented bodies, and jointed limbs. Crustaceans are usually distinguishable from the other arthropods in several important ways, chiefly: Biramous appendages. Most crustaceans have appendages or limbs that are split into two, usually segmented, branches. Both branches originate on the same proximal segment. Larvae. Early in development, most crustaceans go through a series of larval stages, the first being the nauplius larva, in which only a few limbs are present, near the front on the body; crustaceans add their more posterior limbs as they grow and develop further. The nauplius larva is unique to Crustacea. Eyes. The early larval stages of crustaceans have a single, simple, median eye composed of three similar, closely opposed parts. This larval eye, or “naupliar eye,” often disappears later in development, but on some crustaceans (e.g., the branchiopod Triops) it is retained even after the adult compound eyes have developed. In all copepod crustaceans, this larval eye is retained throughout their development as the 1 only eye, although the three similar parts may separate and each become associated with their own cuticular lens.
    [Show full text]