foods Article Influence of Selenium Biofortification on the Growth and Bioactive Metabolites of Ganoderma lucidum Mengmeng Xu 1,2, Song Zhu 3, Lingling Wang 1, Zhiyi Wei 1,2, Liting Zhao 1,2, Guiyang Shi 1,2,4 and Zhongyang Ding 1,2,4,* 1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, China;
[email protected] (M.X.);
[email protected] (L.W.);
[email protected] (Z.W.);
[email protected] (L.Z.);
[email protected] (G.S.) 2 National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China 3 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
[email protected] 4 Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China * Correspondence:
[email protected]; Tel./Fax: +86-510-85918221 Abstract: Selenium biofortification of edible and medicinal mushrooms is an effective way to produce selenium-enriched food supplements. Ganoderma lucidum is the typical one with excellent biological activity. This study investigated G. lucidum growth and bioactive metabolites alterations during liquid culture with different concentrations of selenite. Low selenium levels did not affect growth and mycelia morphology, whereas high selenium levels negatively influenced growth, dramatically decreased biomass, caused nucleic acid and protein leakage, damaged cell walls and membranes, and resulted in indicators such as degraded cells, a red color, and an unpleasant odor. Through headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) Citation: Xu, M.; Zhu, S.; Wang, L.; analysis, ten volatile Se compounds were identified in G.