Enthalpies of Sublimation of Organic and Organometallic Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Enthalpies of Sublimation of Organic and Organometallic Compounds Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910–2001 James S. Chickosa… Department of Chemistry, University of Missouri-St. Louis, Saint Louis, Missouri 63121 William E. Acree, Jr.b… Department of Chemistry, University of North Texas, Denton, Texas 76203 ͑Received 22 October 2001; accepted 11 February 2002; published 7 June 2002͒ A compendium of sublimation enthalpies, published within the period 1910–2001 ͑over 1200 references͒, is reported. A brief review of the temperature adjustments for the sublimation enthalpies from the temperature of measurement to the standard reference temperature, 298.15 K, is included, as are recently suggested values for several reference materials. Sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. © 2002 American Institute of Physics. Key words: compendium; enthalpies of condensation; evaporation; organic compounds; organometallic compounds; sublimation; sublimation enthalpy. Contents enthalpies to 298.15 K....................... 538 2. A hypothetical molecule illustrating the different hydrocarbon groups in estimating Cp........... 541 1. Introduction................................ 537 2. Heat Capacity Adjustments. ................. 538 3. Group Additivity Values for C (298.15 K) 1. Introduction pc Estimations................................ 539 Sublimation enthalpies are important thermodynamic 4. Reference Materials for Sublimation Enthalpy properties of the condensed phase. Frequently they are used Measurements.............................. 539 in correcting enthalpies of formation to the gas phase and in 5. Sublimation Enthalpy Compendium............ 539 evaluating environmental transport properties.1,2 Sublimation 6. References for Tables 6 and 7................. 667 enthalpy measurements are also useful to studies of polymor- 7. Acknowledgments.......................... 697 phism and predictions of molecular packing. The measure- 8. References................................. 697 ments provide benchmark numbers that can be used to vali- date the calculations.3 Examination of the data in this List of Tables compendium will reveal some large discrepancies in reported 1. Equations for the temperature adjustments of enthalpies of sublimation. It is likely that some of the dis- sublimation enthalpies....................... 538 crepancies reported by different laboratories are due to mea- 2. Group values for estimating the C (298.15 K)... 4 pc 540 surements made on different polymorphic modifications. 3. Some estimations of C (298.15 K) using the pc Sublimation enthalpy measurements also can reveal differ- group values of Tables 2͑A͒ and 2͑B͒.......... 542 ences in interactions in chiral solids and their racemic modi- 4. Recommended reference standards for fications. Very little experimental work has been reported in sublimation enthalpy measurements............ 543 this respect.5,6 5. A list of acronyms used in Tables 6 and 7....... 544 Our interests in sublimation enthalpies goes back nearly 3 6. Reported enthalpies of sublimation of organic decades.5 Initially interested in using sublimation enthalpies compounds, 1910–2001...................... 545 to correct enthalpies of formation data to a standard state, we 7. Enthalpies of sublimation of some organometallic have since focused our attention on their measurement,7 and inorganic compounds, 1910–2001.......... 633 estimation,8 and assessment.9 In a parallel study, a compila- tion of available sublimation enthalpies was initiated in the 5 List of Figures 1980s. A reasonably exhaustive version of this database 1. A thermodynamic cycle for adjusting sublimation covering the literature up to the mid 1990s is available on line at http://webbook.nist.gov/chemistry/. The present ver- sion updates this compilation to the year 2001. Although our a͒ Author to whom correspondence should be addressed; electronic mail: intent has been to provide an exhaustive coverage of the [email protected] b͒Electronic mail: [email protected] literature from 1910 to 2001, this listing is probably still far © 2002 American Institute of Physics. from complete. Õ Õ Õ Õ Õ 0047-2689 2002 31„2… 537 162 $35.00537 J. Phys. Chem. Ref. Data, Vol. 31, No. 2, 2002 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 129.120.138.243 On: Wed, 09 Jul 2014 20:48:50 538 J. S. CHICKOS AND W. E. ACREE, JR. ⌬ ͒ subHm͑298.15 K T ϭ⌬ ͑ ͒ϩ ͵ m ͑ Ϫ ͒ ͑ ͒ subHm Tm C p Cpg dT, 1 298.15 c ⌬ ͒ subHm͑298.15 K Ϸ⌬ H ͑T ͒ϩ͑C ϪCp ͓͒T Ϫ298.15͔. ͑2͒ sub m m pc g m Experimental heat capacities for many solids at 298.15 K are available.10 Experimental gas phase heat capacities for compound that are solids at 298.15 K are unavailable and generally need to be estimated. Gas phase heat capacities can FIG. 1. A thermodynamic cycle for adjusting sublimation enthalpies to 298.15 K. be calculated from statistical mechanics or estimated by group additivity methods.11 A number of group additivity methods have been developed to estimate gas phase heat 2. Heat Capacity Adjustments capacities.11–13 However, group values for some functional groups are not available. This has encouraged the develop- Sublimation enthalpies are measurements based on mass ment of other estimation methods. Table 1 briefly summa- transport and as such are directly or indirectly dependent rizes the various equations that have been used in place of upon vapor pressure. The vapor pressure of different solids at the second term in Eq. ͑2͒. the same temperature can vary by many orders of magnitude. Equation ͑3͒ can easily be derived by assuming that the In order to obtain a reasonable amount of mass transport, it is gas is ideal and that the Dulong–Petit value of 3RN holds for frequently necessary to conduct these measurements at tem- the solid, where the term R represents the gas constant and N 5 peratures that differ substantially from the standard reference is the number of atoms/molecule. A similar relationship but temperature, 298.15 K. The actual temperature of measure- characterized by a temperature coefficient of 6R ͓Eq. ͑4͔͒ has 14 ment depends on the sensitivity of the instrument or appara- been suggested by Pedley. Temperature coefficients of 40 Ϫ1 15 tus and the properties of the substance. In addition, these J mol have been used by Melia and Merrifield, and a Ϫ1 16 measurements are often conducted as a function of tempera- value of 60 J mol has been used by de Kruif et al. for a ture. series of amino acids and peptides. The magnitude of the sublimation enthalpy is dependent A major limitation of most of the equations listed in Table on temperature. Figure 1 and Eqs. ͑1͒ and ͑2͒ illustrate the 1 is that the heat capacity adjustments are treated as universal origin of this temperature dependence in terms of a thermo- constants independent of molecular structure. Only Eq. ͑7͒ is dynamic cycle. If the heat capacities of the solid and gas sensitive to differences in molecular structure. This equation phase are known, C p and Cpg , respectively, then the subli- was derived from a correlation using estimated heat capaci- c 17 mation enthalpy at 298.15 K can be related to the experimen- ties of the solid at 298.15 K. This correlation was devel- ͑ ͒ oped from the observed dependence of the temperature ad- tal measurements by using Eq. 1 . This equation, generally 17 referred to as Kirchhoff’s equation, can be used to adjust justment on both molecular structure and size. Experimental or estimated values of C (298.15 K) can be sublimation enthalpy measurements to any reference tem- pc perature. Tm represents either the temperature of measure- used in this equation. ment for calorimetric measurements or the mean temperature Previous work has demonstrated that Eq. ͑7͒ gives results of measurement for experiments conducted over narrow that are generally as good as or better than the use of the 7,8͑b͒,18 ranges of temperature. Treating the heat capacities of the two other equations in Table 1. The use of Eq. ͑7͒ should phases as independent of temperature and integrating Eq. ͑1͒ be limited to the temperature range 200–500 K. A standard Ϫ1 results in Eq. ͑2͒. Since the magnitude of the heat capacity of deviation of Ϯ33 J mol has been associated with the term: ͓0.75ϩ0.15C (298.15 K)͔. The total uncertainty of the the gas phase is usually smaller than that of the solid phase pc ͑c͒, sublimation enthalpies increase with decreasing tempera- temperature adjustment depends on both the magnitude of ture C and T . In applications, an uncertainty of one-third of pc m TABLE 1. Equations for the temperature adjustments of sublimation enthalpies Corrections for the sublimation enthalpies ͑JmolϪ1͒ Equation Reference (C ϪCp )͓T Ϫ298.15͔ϭ2R͓T Ϫ298.15͔ ͑3͒ 5 pc g m m (C ϪCp )͓T Ϫ298.15͔ϭ6R͓T Ϫ298.15͔ ͑4͒ 14 pc g m m (C ϪCp )͓T Ϫ298.15͔ϭ40͓T Ϫ298.15͔ ͑5͒ 15 pc g m m (C ϪCp )͓T Ϫ298.15͔ϭ60͓T Ϫ298.15͔ ͑6͒ 16 pc g m m (C ϪCp )͓T Ϫ298.15͔ϭ͓0.75ϩ0.15C (298.15 K)͔͓T Ϫ2.98͔ ͑7͒ 17 pc g m pc m J. Phys. Chem. Ref. Data, Vol. 31, No. 2, 2002 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 129.120.138.243 On: Wed, 09 Jul 2014 20:48:50 ENTHALPY OF SUBLIMATION 539 the total temperature adjustment has been arbitrarily chosen pounds exhibiting low vapor pressures. While some of the as the uncertainty ͑Ϯ2 ␴͒.9 observed differences in reported enthalpies may be due to Equations ͑3͒–͑6͒ do not require C values; their use can polymorphism, others are probably due to the lack of a suf- pc be an advantage if an appropriate group value or experimen- ficient number of reference compounds that vary in their tal heat capacity is unavailable for a particular substance.
Recommended publications
  • Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
    Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc.
    [Show full text]
  • 2004 DOE/BES Analysis Program Contractors' Meeting
    2004 DOE/BES Analysis Program Contractors’ Meeting Annapolis, Maryland February 12 – 14, 2004 Sponsored by The U.S. Department of Energy Office of Basic Energy Sciences Workshop Chair: John Miller 2004 DOE/BES Analysis Program Contractors’ Meeting Program and Abstracts Department of Energy Office of Science Office of Basic Energy Sciences Chemical Sciences, Geosciences and Biosciences Division FOREWORD This abstract booklet provides a record of the 2004 U.S. Department of Energy, Office of Basic Energy Sciences, Analysis Program Contractors’ Meeting. This group of scientists last met as part of the larger Separations and Analysis Program Contractors’ Meeting held in San Diego April 5-7, 2001. The agenda and abstracts of that meeting may be found on the web at http://www.sc.doe.gov/bes/chm/Publications/publications.html. There is wide agreement that a gathering of researchers with common interests and sponsorship provides a fruitful environment for exchange of research results, research techniques, and research opportunities. The primary means of communicating research achievements and perspectives at this meeting is oral presentations, formal discussion periods and informal breaks and meals. The agenda has been organized so that papers in related disciplines – such as mass spectrometry or optical spectroscopy – are loosely clustered together. I am pleased to have the privilege of organizing this meeting and of serving as the program manager of this world-class research program. In carrying out these tasks, I learn from the achievements, and share the excitement, of the research of the many sponsored scientists and students whose names appear on the papers in the following pages.
    [Show full text]
  • Synthetic Applications of Dienes and Polyenes, Excluding Cycloadditions
    The Chemistry of Dienes and Polyenes. Volume 2 Edited by Zvi Rappoport Copyright 2000 John Wiley & Sons, Ltd. ISBN: 0-471-72054-2 CHAPTER 9 Synthetic applications of dienes and polyenes, excluding cycloadditions NANETTE WACHTER-JURCSAK Department of Chemistry, Biochemistry and Natural Science, Hofstra University, Hempstead, New York 11549-1090, USA Fax: (516) 463-6394; e-mail: [email protected] and KIMBERLY A. CONLON Department of Pharmacological Sciences, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA Fax: (516) 444-3218; e-mail: [email protected] I. INTRODUCTION ..................................... 693 II. ADDITION REACTIONS ............................... 694 III. OXIDATION REACTIONS ............................... 700 IV. COUPLING REACTIONS ............................... 710 A. Wittig Reactions of Dienes and Polyenes .................... 711 B. Coupling Promoted by Organometallic Reagents ............... 712 V. DIMERIZATION REACTIONS ............................ 718 VI. PREPARATION OF METAL–POLYENE COMPLEXES ........... 720 VII. REARRANGEMENTS .................................. 722 A. Cope Rearrangement ................................. 722 B. Claisen Rearrangement ............................... 728 VIII. REFERENCES ....................................... 736 I. INTRODUCTION The reactivity of polyenes is influenced by their substituents, and whether or not the multiple double bonds of the unsaturated hydrocarbon are conjugated or isolated from 693 694 Nanette Wachter-Jurcsak and Kimberly A. Conlon one another. The -system of a polyene may be fully conjugated, or there may be one or more pairs of conjugated double bonds isolated from the other -bonds in the molecule, or, alternatively, each of the carbon–carbon double bonds in the polyene may be isolated from one another. Conjugated -systems react differently with electrophiles than isolated double bonds. Addition of hydrogen to isolated double bonds has been previously discussed in this series and will not be addressed here1.
    [Show full text]
  • Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I by V
    Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I By V. Vill, C. Bauhofer, G. Peters, H. Sajus, P. Weigner, LCI-Publisher and Chemistry Department of the University of Hamburg All printed index material has been used to build up the comprehensive Scidex database index developed by LCI Publisher GmbH, Hamburg For further information please visit www.lci-publisher.com From this database a CD-ROM and two online versions were derived. The first is attached to each of the printed subvolumes and the latter are offered for free use at the following addresses: Scidex Database online with graphical structure search on http://lb.chemie.uni-hamburg.de/ Or the easy to use html version on http://lb.chemie.uni-hamburg.de/static/ Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Index of Organic Compounds Subvolume A Compounds with 1 to 7 Carbon Atoms Editor: V. Vill Authors: V. Vill, G. Peters, H. Sajus 1 3 ISBN 3-540-66203-0 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Index of Organic Compounds A: Editor: V. Vill At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik.
    [Show full text]
  • Richardmooremscthesis1970 O
    University of St Andrews Full metadata for this thesis is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ This thesis is protected by original copyright sOMd MBTAL 3ARB0NYL JOMPL^XBS OF THIOJARBUNYL JQKPUUNud BEING AM a.SC. THESIS PRESENTED TO THE UNIVERSITY OF ST. ANDREWS The thesis deals with three main subjects. Firstly, the preparation of a new class of organosulphur-metal carbonyl compounds is described. Secondly, an attempted preparation of sulphines is describee, and finally, a new method of preparing methylthioketones is described. The metal carbonyl complexes were prepared from three types of thiocarbonyl compound. Pyrao- and thiopyran-A—thiones were found to readily form complexes provided that the 3 and 5 positions on the nucleus were unsubstituted, or at the most, mono-substituted. Indolizine thioaldebydes were also found to form stable complexes with molybdenum hexacarbonyl, although in lower yields than with pyran- and thiopyranthiones. Also forming stable complexes, the pyrrolothiazole thioaldehydes. Some difficulty was experienced in assigning a molecular formula to these compondds as two possibilities remained after elementary analysis, namely the-rr-complex M(G0)3L and the er-complex M(G0)5L where M is the metal, and L is the ligand. The obvious solution to the problem, X-Ray crystallography, was ruled out by not being able to obtain large enough crystals of the complex. Similarly mass spectra was unhelpful in assigning a correct formula, as no recognised molecular ion peaks were discernible. However one peak to be recognised was MoCOS indicating that bonding is througn the thiocarbonyl sulphur, or in other words a <r—complex had been formed.
    [Show full text]
  • Safety Data Sheet Material Name: HFCL4 SDS ID: 00227583P
    Safety Data Sheet Material Name: HFCL4 SDS ID: 00227583P Section 1 - PRODUCT AND COMPANY IDENTIFICATION Material Name HFCL4 Synonyms HAFNIUM TETRACHLORIDE; HAFNIUM (IV) CHLORIDE; (T-4) HAFNIUM CHLORIDE (HfCl4); HAFNIUM CHLORIDE; Cl4Hf Chemical Family metal, halides Product Use semiconductor manufacture Restrictions on Use None known Details of the supplier of the safety data sheet Entegris, Inc. 129 Concord Road Building 2 Billerica, MA 01821 USA Telephone Number: +1-952-556-4181 Telephone Number: +1-800-394-4083 (toll free within North America) Emergency Telephone Number: CHEMTREC - U.S. - 1-800-424-9300 CHEMTREC - Intl. - 1-703-527-3887 E-mail: [email protected] Section 2 - HAZARDS IDENTIFICATION Classification in accordance with paragraph (d) of 29 CFR 1910.1200. Combustible Dust Skin Corrosion/Irritation - Category 1B Serious Eye Damage/Eye Irritation - Category 1 Specific target organ toxicity - Single exposure - Category 3 ( respiratory system ) GHS Label Elements Symbol(s) Signal Word Danger Hazard Statement(s) ____________________________________________________________ Page 1 of 9 Issue date: 2021-05-11 Revision 6.0 Print date: 2021-05-12 Safety Data Sheet Material Name: HFCL4 SDS ID: 00227583P May form combustible dust concentrations in air. Causes severe skin burns and eye damage. May cause respiratory irritation. Precautionary Statement(s) Prevention Do not breathe dust. Wear protective gloves/protective clothing/eye protection/face protection. Wash thoroughly after handling. Use only outdoors or in a well-ventilated area. Response Immediately call a POISON CENTER or doctor/physician. IF INHALED: Remove person to fresh air and keep comfortable for breathing. Specific treatment may be needed, see first aid section of Safety Data Sheet.
    [Show full text]
  • Transition Metal Complexes of Dicyanoacetylene
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 Transition Metal Complexes of Dicyanoacetylene: a Study of the Reaction Chemistry of Low Valence States of the Transition Metals, Platinum, Palladium, Nickel, Rhodium, and Iridium. Gregory Lloyd Mcclure Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mcclure, Gregory Lloyd, "Transition Metal Complexes of Dicyanoacetylene: a Study of the Reaction Chemistry of Low Valence States of the Transition Metals, Platinum, Palladium, Nickel, Rhodium, and Iridium." (1971). LSU Historical Dissertations and Theses. 2001. https://digitalcommons.lsu.edu/gradschool_disstheses/2001 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 71-29,382 McCLURE, Gregory Lloyd, 1993- TRANSITION METAL COMPLEXES OF DICYANOACETYLENE: A STUDY OF THE REACTION CHEMISTRY OF LOW VALENCE STATES OF THE TRANSITION METALS, PLATINUM, PALLADIUM, NICKEL, RHODIUM, AND IRIDIUM. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1971 C hem i stry, inorgan ic University Microfilms, A XEROX Company , Ann Arbor. Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED TRANSITION
    [Show full text]
  • Synthesis, Characterization and Reactivity of Functionalized Iron-Sulfur Clusters As Bioinspired Hydrogenase Models
    Technisch-Naturwissenschaftliche Fakultät Synthesis, Characterization and Reactivity of Functionalized Iron-Sulfur Clusters as Bioinspired Hydrogenase Models DISSERTATION zur Erlangung des akademischen Grades Doktor der Technischen Wissenschaften im Doktoratsstudium der Technischen Wissenschaften Eingereicht von: DI Manuel Kaiser Angefertigt am: Institut für Anorganische Chemie Beurteilung: Prof. Dr. Günther Knör Assoc.-Prof. Mario Waser Mitwirkung: Linz, November 2015 Eidesstattliche Erklärung Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument identisch. Linz, November 2015 ________________________________ Manuel Kaiser I Dipl.‐Ing. Manuel Kaiser Persönliche Daten Geburtsdatum 15.11.1985 Staatsangehörigkeit Österreich Familienstand ledig Telefon 0699/12123124 Mail [email protected] Adresse Johann‐Wilhelm‐Klein‐Straße 2‐4, 4040 Linz Ausbildung 10/2012 – 12/2015 Doktoratsstudium Technische Wissenschaften, JKU Linz Dissertation am Institut für Anorganische Chemie betreut von Prof. Dr. Günther Knör: „Synthesis, Characterization and Reactivity of Functionalized Iron‐Sulfur Clusters as Bioinspired Hydrogenase Models“ 10/2005 – 09/2012 Diplomstudium Technische Chemie, JKU Linz (Abschluss: Dipl.‐Ing.) Diplomarbeit am Institut für Anorganische Chemie
    [Show full text]
  • Ionization Photophysics and Spectroscopy of Dicyanoacetylene Sydney Leach, Martin Schwell, Gustavo A
    Ionization photophysics and spectroscopy of dicyanoacetylene Sydney Leach, Martin Schwell, Gustavo A. Garcia, Yves Bénilan, Nicolas Fray, Marie-Claire Gazeau, François Gaie-Levrel, Norbert Champion, and Jean-Claude Guillemin Citation: The Journal of Chemical Physics 139, 184304 (2013); doi: 10.1063/1.4826467 View online: http://dx.doi.org/10.1063/1.4826467 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/18?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 193.51.99.1 On: Wed, 05 Feb 2014 16:48:49 THE JOURNAL OF CHEMICAL PHYSICS 139, 184304 (2013) Ionization photophysics and spectroscopy of dicyanoacetylene Sydney Leach,1,a) Martin Schwell,2,a) Gustavo A. Garcia,3 Yves Bénilan,2 Nicolas Fray,2 Marie-Claire Gazeau,2 François Gaie-Levrel,3,b) Norbert Champion,1 and Jean-Claude Guillemin4 1LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon, France 2LISA UMR CNRS 7583, Université Paris-Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil, France 3Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, France 4Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France (Received 17 June 2013; accepted 8 October 2013; published online 11 November 2013) Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,101,662 B2 Tamarkin Et Al
    USOO91 01662B2 (12) United States Patent (10) Patent No.: US 9,101,662 B2 Tamarkin et al. (45) Date of Patent: *Aug. 11, 2015 (54) COMPOSITIONS WITH MODULATING A61K 47/32 (2013.01); A61 K9/0014 (2013.01); AGENTS A61 K9/0031 (2013.01); A61 K9/0034 (2013.01); A61 K9/0043 (2013.01); A61 K (71) Applicant: Foamix Pharmaceuticals Ltd., Rehovot 9/0046 (2013.01); A61 K9/0048 (2013.01); (IL) A61 K9/0056 (2013.01) (72) Inventors: Dov Tamarkin, Macabim (IL); Meir (58) Field of Classification Search Eini, Ness Ziona (IL); Doron Friedman, CPC ........................................................ A61 K9/12 Karmei Yosef (IL); Tal Berman, Rishon See application file for complete search history. le Ziyyon (IL); David Schuz, Gimzu (IL) (56) References Cited (73) Assignee: Foamix Pharmaceuticals Ltd., Rehovot U.S. PATENT DOCUMENTS (IL) 1,159,250 A 11/1915 Moulton (*) Notice: Subject to any disclaimer, the term of this 1,666,684 A 4, 1928 Carstens patent is extended or adjusted under 35 1924,972 A 8, 1933 Beckert 2,085,733. A T. 1937 Bird U.S.C. 154(b) by 0 days. 2,390,921 A 12, 1945 Clark This patent is Subject to a terminal dis 2,524,590 A 10, 1950 Boe claimer. 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely 2,767,712 A 10, 1956 Waterman (21) Appl. No.: 14/045,528 2.968,628 A 1/1961 Reed 3,004,894 A 10/1961 Johnson et al. (22) Filed: Oct. 3, 2013 3,062,715 A 11/1962 Reese et al.
    [Show full text]
  • Hafnium Nitrate Precursor Synthesis and Hfo2 Thin Film Deposition WEIWEI ZHUANG,1 JOHN F. CONLEY,1 YOSHI ONO,1 DAVID R. EVANS1 A
    - 1 - Hafnium Nitrate Precursor Synthesis and HfO2 Thin Film Deposition WEIWEI ZHUANG,1 JOHN F. CONLEY,1 YOSHI ONO,1 DAVID R. EVANS1 AND R. SOLANKI2 1Sharp Laboratories of America, 5700 Pacific Rim Blvd Camas, WA 98607 2Oregon Graduate Institute, Beaverton, OR, 97006 The paper will introduce a simple new method on the synthesis of both hafnium and zirconium nitrate precursors. The intermediate product, dinitrogen pentoxide produced from the water extraction from fume nitric acid via phosphorus pentoxide, was condensed by liquid nitrogen trap into a flask equipped with hafnium or zirconium tetrachloride. To give the high yield, the mixture of fume nitric acid and phosphorus pentoxide was heated to a certain temperature, from which large quantity of dinitrogen pentoxide had been generated. In the following step, hafnium or zirconium tetrachloride was refluxed over dinitrogen pentoxide at 30 to 35 oC for half- hour. The product was purified by sublimation. High yield, above 95%, was obtained. The cost for the hafnium nitrate precursor synthesis was estimated. The precursor was not stable at room temperature, and should be stored in refrigerator in sealed vials. No chlorine was detected from both EDS and chemical analysis. The volatility was evaluated by thermal gravity analysis. For high k thin film applications, the precursors were evaluated through the hafnium oxide thin film deposition via ALD process. High quality hafnium oxide thin films were obtained. The hafnium oxide thin film property consistence using different batches of our synthesized hafnium nitrate precursor was also verified. X-ray diffraction analysis indicated the films were smooth, uniform, amorphous as deposited and monoclinic after post annealing.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]