Alkyl and Fluoroalkyl Manganese Pentacarbonyl Complexes As

Total Page:16

File Type:pdf, Size:1020Kb

Alkyl and Fluoroalkyl Manganese Pentacarbonyl Complexes As En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (Toulouse INP) Discipline ou spécialité : Chimie Organométallique et de Coordination Présentée et soutenue par : M. ROBERTO MORALES CERRADA le jeudi 15 novembre 2018 Titre : Complexes de manganèse pentacarbonyle alkyle et fluoroalkyle comme modèles d'espèces dormantes de l'OMRP Ecole doctorale : Sciences de la Matière (SDM) Unité de recherche : Laboratoire de Chimie de Coordination (L.C.C.) Directeur(s) de Thèse : MME FLORENCE GAYET M. BRUNO AMEDURI Rapporteurs : M. GERARD JAOUEN, UNIVERSITE PARIS 6 Mme SOPHIE GUILLAUME, CNRS Membre(s) du jury : M. MATHIAS DESTARAC, UNIVERSITE TOULOUSE 3, Président M. BRUNO AMEDURI, CNRS, Membre M. HENRI CRAMAIL, INP BORDEAUX, Membre Mme FLORENCE GAYET, INP TOULOUSE, Membre A mi abuelo Antonio ‐ i ‐ ‐ ii ‐ Remerciements Ce travail a été réalisé dans deux unités de recherche du CNRS : le laboratoire de Chimie de Coordination (LCC) à Toulouse, au sein de l’équipe LAC2, et l’Institut Charles Gerhardt de Montpellier (ICGM), au sein de l’équipe IAM. Il a été codirigé par Dr. Florence Gayet et Dr. Bruno Améduri. Je tiens tout d’abord à remercier Dr. Azzedine Bousseksou, directeur du LCC, et Dr. Patrick Lacroix‐Desmazes, directeur de l’équipe IAM à l’ICGM, pour avoir accepté de m’accueillir au sein de ses laboratoires. Je remercie tout particulièrement mes directeurs de thèse, Dr. Florence Gayet et Dr. Bruno Améduri, pour m’avoir encadré durant ces trois années de doctorat. Un immense merci à tous les deux pour tous leurs conseils, leur patience et leurs connaissances qui m’ont apporté et qui m’ont permis de mener à bien ce travail. Je suis très honoré que Dr. Sophie Guillaume et Prof. Gérald Jaouen aient accepté d’être rapporteurs. Qu’ils trouvent ici l’expression de ma profonde reconnaissance et mes sincères remerciements. J’exprime également ma gratitude au Prof. Mathias Destarac et au Prof. Henri Cramail, qui ont bien voulu être examinateurs. Un très grand merci également au Prof. Rinaldo Poli pour toute son aide apportée pendant ces trois années de thèse et de son expertise en chimie qui m’a permis de résoudre un grand nombre de questions et problèmes auxquels j’ai dû faire face. Qu’il soit aussi remercié pour sa gentillesse, sa disponibilité permanente et pour les nombreux encouragements qu’il m’a prodigués. Je remercie Dr. Vincent Ladmiral et Dr. Christophe Fliedel pour leur aide et leurs conseils, Dr. Antoine Debuigne et Dr. Christophe Detrembleur pour leurs conseils lors des réunions d’avancement du projet, ainsi que l’ensemble de personnes qui ont participé à ce travail. Merci au Dr. Jean‐Claude Daran pour son expertise à déterminer la plupart des structures DRX de ce travail. Mme Dominique Granier et Dr. Arie Van der ‐ iii ‐ Lee pour leur aide en DRX, ainsi que M. Cédric Totée, Prof. Gilles Silly et M. Francis Lacassin pour leur aide et grande expertise en spectroscopie RMN. Dr. Claire Negrell pour son aide en caractérisation des polymères par chromatographie d’exclusion stérique. Je tiens à remercier l’ensemble du personnel du LCC et de l’ICGM, avec une mention spéciale à Sandrine Vincendeau pour toute son aide pour mettre en place un grand nombre d’expériences, ainsi que de m’avoir accueilli au laboratoire toujours avec un grand sourire, Dr. Eric Manoury pour son aide dans le domaine de la chimie organique et sa bonne humeur, Dr. Agnès Labande pour ses conseils et gentillesse et Dr. Abdellatif Manseri pour son support technique et son humour. Je remercie également l’ensemble des personnes que j’ai côtoyé tout au long de la thèse, notamment Dr. Ekaterina Bellan, Maxime Colpaert, Dr. Gérald Lopez, Marc Guerre, Dr. Qizhi Yang, Mohammad Wehbi, Dr. Panagiotis Falireas, Erinque Folgado et Kazuki Komoda. Je remercie l’Agence Nationale de la Recherche (ANR) pour avoir financé ces recherches dans le cadre du projet FLUPOL. Je tiens également à remercier très chaleureusement toute ma famille qui m’a soutenu et motivé pendant ces trois ans. Enfin, je tiens à remercier ma compagne María José pour sa patience et son soutien tout au long de ce travail. ‐ iv ‐ “Once you stop learning, you start dying.” Albert Einstein ‐ v ‐ ‐ vi ‐ Abbreviations list acac Acetylacetonate Acetone‐d6 Deuterated acetone AFCT Addition‐Fragmentation Chain Transfer ATRP Atom Transfer Radical Polymerization b. p. Boiling Point BDE Bond Dissociation Enthalpy Benzene‐d6 Deuterated benzene BrTFE Bromotrifluoroethylene CMRP Cobalt‐Mediated Radical Polymerization CRP Controlled Radical Polymerization CSIRO Commonwealth Scientific and Industrial Research Organization CTA Control Transfer Agent CTFE Chlorotrifluoroethylene D.P. Degree of Polymerization DCM Dichloromethane DFAA Difluoroacetic anhydride DFT Density Functional Theory DMC Dimethyl Carbonate DMF‐d6 Deuterated dimethylformamide DMSO‐d6 Deuterated dimethyl sulfoxide DSC Differential Scanning Calorimetry Ɖ Dispersity FEVE Fluoroethylenevinylether FTIR Fourier‐Transform Infrared spectroscopy HF Hydrogen Fluoride HOAO Highest Occupied Atomic Orbital ITP Iodine Transfer Polymerization ka Activation rate constant kd Deactivation rate constant L Ligand ‐ vii ‐ LUMO Lowest Unoccupied Molecular Orbital MADIX Macromolecular Design by Interchange of Xanthates MAF‐TBE tert-butyl-2-trifluoromethacrylate MMA Methyl Methacrylate Mt Metal NaK Sodium‐potassium metallic liquid alloy NMP Nitroxide‐Mediated Polymerization NMR Nuclear Magnetic Resonance OMRP Organometallic‐Mediated Radical Polymerization Organometallic‐Mediated Radical Polymerization – Degenerative OMRP‐DT Transfer Organometallic‐Mediated Radical Polymerization – Reversible OMRP‐RT Termination ORD Optical Rotatory Dispersion PMA Poly(Methyl acrylate) PMMA Poly(Methyl Methacrylate) ppm Parts‐Per‐Million (10‐6) PPN+ Bis(triphenylphosphine)iminium PS Poly(Styrene) PTFE Poly(Tetrafluoroethylene) PVAc Poly(Vinyl Acetate) PVDF or PVF2 Poly(Vinylidene Fluoride) PVDFH PVDF‐(CF2CH2)‐ PVDFT PVDF‐(CH2CF2)‐ PVF Poly(Vinyl Fluoride) R Alkyl chain RAFT Reversible Addition‐Fragmentation chain Transfer RDRP Reversible‐Deactivation Radical Polymerization RF Fluoroalkyl chain S Styrene SEC Size exclusion chromatography TFAA Trifluoroacetic anhydride TFE Tetrafluoroethylene TFP 3,3,3‐Trifluoropropene TGA Thermogravimetric Analysis ‐ viii ‐ THF Tetrahydrofuran TrFE Trifluoroethylene UV Ultraviolet VDF or VF2 Vinylidene Fluoride VF Vinyl Fluoride ‐ ix ‐ Complexes abbreviations ‐ x ‐ Table of contents General introduction ........................................................................................................ 1 1. State‐of‐the‐art ........................................................................................................... 7 1.1. Fluorinated polymers ........................................................................................... 9 1.1.1. Introduction ............................................................................................... 9 1.1.2. Vinylidene fluoride and poly(vinylidene fluoride) ................................... 10 1.1.3. Polymerization of fluoromonomers ......................................................... 12 1.1.4. Coordination‐insertion polymerization ................................................... 16 1.1.5. Controlled radical polymerization of fluoromonomers ........................... 17 1.2. Metal carbonyl complexes ................................................................................. 25 1.2.1. Structure and bonding ............................................................................. 26 1.2.2. Physical characteristics ............................................................................ 27 1.2.3. Applications .............................................................................................. 28 1.2.4. Techniques of characterization ................................................................ 28 1.2.5. Manganese carbonyl complexes .............................................................. 29 1.2.6. Dimanganese decarbonyl ........................................................................ 29 1.2.7. Manganese carbonyl derivates ................................................................ 32 1.3. Conclusion .......................................................................................................... 37 1.4. References .......................................................................................................... 39 2. Alkylpentacarbonylmanganese(I) complexes .......................................................... 45 2.1. Introduction ........................................................................................................ 47 2.2. Results and discussion ........................................................................................ 49 2.2.1. Synthesis of potassium pentacarbonylmanganate .................................. 49 2.2.2. 1‐Methyl‐2‐methoxy‐2‐oxoethylpentacarbonylmanganese(I), 1 ............ 51 2.2.3. 1‐Acetyloxyethylpentacarbonylmanganese(I), 2 ..................................... 56 2.2.4. 1‐Phenylethylpentacarbonylmanganese(I), 3 .......................................... 63 2.3. Conclusion .......................................................................................................... 68 2.4. Experimental section .......................................................................................... 70 2.5. References .........................................................................................................
Recommended publications
  • Richardmooremscthesis1970 O
    University of St Andrews Full metadata for this thesis is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ This thesis is protected by original copyright sOMd MBTAL 3ARB0NYL JOMPL^XBS OF THIOJARBUNYL JQKPUUNud BEING AM a.SC. THESIS PRESENTED TO THE UNIVERSITY OF ST. ANDREWS The thesis deals with three main subjects. Firstly, the preparation of a new class of organosulphur-metal carbonyl compounds is described. Secondly, an attempted preparation of sulphines is describee, and finally, a new method of preparing methylthioketones is described. The metal carbonyl complexes were prepared from three types of thiocarbonyl compound. Pyrao- and thiopyran-A—thiones were found to readily form complexes provided that the 3 and 5 positions on the nucleus were unsubstituted, or at the most, mono-substituted. Indolizine thioaldebydes were also found to form stable complexes with molybdenum hexacarbonyl, although in lower yields than with pyran- and thiopyranthiones. Also forming stable complexes, the pyrrolothiazole thioaldehydes. Some difficulty was experienced in assigning a molecular formula to these compondds as two possibilities remained after elementary analysis, namely the-rr-complex M(G0)3L and the er-complex M(G0)5L where M is the metal, and L is the ligand. The obvious solution to the problem, X-Ray crystallography, was ruled out by not being able to obtain large enough crystals of the complex. Similarly mass spectra was unhelpful in assigning a correct formula, as no recognised molecular ion peaks were discernible. However one peak to be recognised was MoCOS indicating that bonding is througn the thiocarbonyl sulphur, or in other words a <r—complex had been formed.
    [Show full text]
  • Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds
    Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Library Listing – 1,523 spectra Subset of Aldrich FT-IR Library related to organometallic, inorganic, boron and deueterium compounds. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collections of FT-IR Spectra Editions I or II, and the data has been carefully examined and processed by Thermo Fisher Scientific. Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Index Compound Name Index Compound Name 1066 ((R)-(+)-2,2'- 1193 (1,2- BIS(DIPHENYLPHOSPHINO)-1,1'- BIS(DIPHENYLPHOSPHINO)ETHAN BINAPH)(1,5-CYCLOOCTADIENE) E)TUNGSTEN TETRACARBONYL, 1068 ((R)-(+)-2,2'- 97% BIS(DIPHENYLPHOSPHINO)-1,1'- 1062 (1,3- BINAPHTHYL)PALLADIUM(II) CH BIS(DIPHENYLPHOSPHINO)PROPA 1067 ((S)-(-)-2,2'- NE)DICHLORONICKEL(II) BIS(DIPHENYLPHOSPHINO)-1,1'- 598 (1,3-DIOXAN-2- BINAPH)(1,5-CYCLOOCTADIENE) YLETHYNYL)TRIMETHYLSILANE, 1140 (+)-(S)-1-((R)-2- 96% (DIPHENYLPHOSPHINO)FERROCE 1063 (1,4- NYL)ETHYL METHYL ETHER, 98 BIS(DIPHENYLPHOSPHINO)BUTAN 1146 (+)-(S)-N,N-DIMETHYL-1-((R)-1',2- E)(1,5- BIS(DI- CYCLOOCTADIENE)RHODIUM(I) PHENYLPHOSPHINO)FERROCENY TET L)E 951 (1,5-CYCLOOCTADIENE)(2,4- 1142 (+)-(S)-N,N-DIMETHYL-1-((R)-2- PENTANEDIONATO)RHODIUM(I), (DIPHENYLPHOSPHINO)FERROCE 99% NYL)ETHYLAMIN 1033 (1,5- 407 (+)-3',5'-O-(1,1,3,3- CYCLOOCTADIENE)BIS(METHYLD TETRAISOPROPYL-1,3- IPHENYLPHOSPHINE)IRIDIUM(I)
    [Show full text]
  • Synthesis, Characterization and Reactivity of Functionalized Iron-Sulfur Clusters As Bioinspired Hydrogenase Models
    Technisch-Naturwissenschaftliche Fakultät Synthesis, Characterization and Reactivity of Functionalized Iron-Sulfur Clusters as Bioinspired Hydrogenase Models DISSERTATION zur Erlangung des akademischen Grades Doktor der Technischen Wissenschaften im Doktoratsstudium der Technischen Wissenschaften Eingereicht von: DI Manuel Kaiser Angefertigt am: Institut für Anorganische Chemie Beurteilung: Prof. Dr. Günther Knör Assoc.-Prof. Mario Waser Mitwirkung: Linz, November 2015 Eidesstattliche Erklärung Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument identisch. Linz, November 2015 ________________________________ Manuel Kaiser I Dipl.‐Ing. Manuel Kaiser Persönliche Daten Geburtsdatum 15.11.1985 Staatsangehörigkeit Österreich Familienstand ledig Telefon 0699/12123124 Mail [email protected] Adresse Johann‐Wilhelm‐Klein‐Straße 2‐4, 4040 Linz Ausbildung 10/2012 – 12/2015 Doktoratsstudium Technische Wissenschaften, JKU Linz Dissertation am Institut für Anorganische Chemie betreut von Prof. Dr. Günther Knör: „Synthesis, Characterization and Reactivity of Functionalized Iron‐Sulfur Clusters as Bioinspired Hydrogenase Models“ 10/2005 – 09/2012 Diplomstudium Technische Chemie, JKU Linz (Abschluss: Dipl.‐Ing.) Diplomarbeit am Institut für Anorganische Chemie
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Structural and electronic studies of complexes relevant to the electrocatalyic reduction of carbon dioxide. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Eric Edward Benson Committee in charge: Professor Clifford P. Kubiak, Chair Professor Andrew G. Dickson Professor Joshua S. Figueroa Professor Arnold L. Rheingold Professor Michael J. Tauber 2012 Copyright Eric Edward Benson, 2012 All rights reserved Signature Page The dissertation of Eric Edward Benson is approved, and it is acceptable in quality and form for publication on microfilm and electronically. Chair University of California, San Diego 2012 iii DEDICATION to my family iv EPIGRAPH Epigraph The further one goes, the less one knows. –Lao Tzu v TABLE OF CONTENTS Table of Contents Signature Page ............................................................................................................. iii Epigraph ........................................................................................................................ v Table of Contents ......................................................................................................... vi List of Figures .............................................................................................................. ix Lists of Schemes .......................................................................................................... xv List of Tables .............................................................................................................
    [Show full text]
  • Organometallic and Catalysis
    ORGANOMETALLIC AND CATALYSIS Dr. Malay Dolai, Assistant Professor, Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur-721404, WB, India. 1.Introduction Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkaline, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and tin, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide (metal carbonyls), cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. In 1827, Zeise's salt is the first platinum- olefin complex: K[PtCl3(C2H4)].H2O, the first invented organometallic compound. Organometallic compounds find wide use in commercial reactions, both as homogeneous catalysis and as stoichiometric reagents For instance, organolithium, organomagnesium, and organoaluminium compounds, examples of which are highly basic and highly reducing, are useful stoichiometrically, but also catalyze many polymerization reactions. Almost all processes involving carbon monoxide rely on catalysts, notable examples being described as carbonylations. The production of acetic acid from methanol and carbon monoxide is catalyzed via metal carbonyl complexes in the Monsanto process and Cativa process. Most synthetic aldehydes are produced via hydroformylation. The bulk of the synthetic alcohols, at least those larger than ethanol, are produced by hydrogenation of hydroformylation- derived aldehydes.
    [Show full text]
  • Summaries of FY 1997 Research in the Chemical Sciences
    DOE/NBM-1098 Rev.-1 September 1997 T O EN FE TM N R E A R P G E Y D U • • A N C I I T R E D E M ST A ATES OF Summaries of FY 1997 Research in the Chemical Sciences U.S. Department of Energy Office of Energy Research Division of Chemical Sciences A searchable version of this summary book is available at the following web address: http://websrv.er.doe.gov/asp/search.asp This search tool is also accessible from the Chemical Sciences web page at: http://www.er.doe.gov/production/bes/chm/chmhome.html Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401 Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161 This document was produced under contract number DE-AC05-76OR00033 between the U.S. Department of Energy and Oak Ridge Associated Universities. ORISE 97-1555 CONTENTS CONTENTS PREFACE ........................................................................ vii Oak Ridge National Laboratory.............................. 42 DIVISION OF CHEMICAL SCIENCES ..................... viii Pacific Northwest National Laboratory .................. 44 PROGRAM DESCRIPTIONS ........................................ ix Heavy Element Chemistry ....................................... 45 LABORATORY ADMINISTRATION ......................... xiii Argonne National Laboratory ................................. 45 Lawrence Berkeley National Laboratory...............
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,045,140 B2 Motterlini Et Al
    USOO7045140B2 (12) United States Patent (10) Patent No.: US 7,045,140 B2 Motterlini et al. (45) Date of Patent: May 16, 2006 (54) THERAPEUTIC DELIVERY OF CARBON FOREIGN PATENT DOCUMENTS MONOXDE HU 211 084 B 4f1990 WO WO 91/O1128 2, 1991 (75) Inventors: Roberto Angelo Motterlini, Middlesex WO WO 91/O1301 2, 1991 (GB); Brian Ernest Mann, Sheffield WO WO 94,22482 10, 1994 (GB) WO WO95/05814 3, 1995 WO WO 98.29115 7, 1998 WO WO 98.48848 11, 1998 (73) Assignee: Hemocorm Limited, London (GB) WO WOOO,56743 9, 2000 WO WO O2/O78684 10, 2002 (*) Notice: Subject to any disclaimer, the term of this WO WO O2/O80923 10, 2002 patent is extended or adjusted under 35 WO WO O3,OOO114 1, 2003 WO WO O3,0666067 8, 2003 U.S.C. 154(b) by 384 days. WO WO O3,O72O24 9, 2003 WO WO O3,O88923 10, 2003 (21) Appl. No.: 10/143,824 WO WO O3,O88981 10, 2003 WO WO O3,O94932 11/2003 (22) Filed: May 14, 2002 OTHER PUBLICATIONS Furchgott, et al. Blood Vessels 1991:28:52-61 (65) Prior Publication Data "Endothelium-Dependent and -Independent Vasodilation US 2003/0064114 A1 Apr. 3, 2003 Involving Cyclic GMP: Relaxation Induced by Nitric Oxide, Carbon Monoxide and Light'. (30) Foreign Application Priority Data Wang et al, Biochemistry, vol. 18, No. 22, 1979, 4960-4977 May 15, 2001 (GB) ................................. O111872.8 “A Correlation of the Visible and Soret Spectra of Dioxygen and Carbon Monoxide-Heme Complexes and Five-Coordi (51) Int. Cl.
    [Show full text]
  • Halons Technical Options Committee 2018 Assess­Ment Report
    Halons Technical Options Committee 2018 Assess ment Report Volume 1 Montreal Protocol on Substances that Deplete the Ozone Layer Ozone Secretariat MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER REPORT OF THE HALONS TECHNICAL OPTIONS COMMITTEE DECEMBER 2018 VOLUME 1 2018 ASSESSMENT REPORT i Montreal Protocol on Substances that Deplete the Ozone Layer Report of the Halons Technical Options Committee December 2018 Volume 1 2018 ASSESSMENT REPORT The text of this report is composed in Times New Roman Co-ordination: Halons Technical Options Committee Composition of the report: Halons Technical Options Committee Reproduction: Ozone Secretariat Date: December 2018 Under certain conditions, printed copies of this report are available from: UNITED NATIONS ENVIRONMENT PROGRAMME Ozone Secretariat, P.O. Box 30552, Nairobi, Kenya This document is also available in portable document format from the Ozone Secretariat's website: https://ozone.unep.org/sites/default/files/Assessment_Panel/Assessment_Panels/TEAP/R eports/HTOC/HTOC_assessment_2018.pdf No copyright involved. This publication may be freely copied, abstracted and cited, with acknowledgement of the source of the material. ISBN: 978-9966-076-48-9 iii Disclaimer The United Nations Environment Programme (UNEP), the Technology and Economic Assessment Panel (TEAP) Co-chairs and members, the Technical Options Committees Co-chairs and members, the TEAP Task Forces Co-chairs and members, and the companies and organisations that employ them do not endorse the performance, worker safety, or environmental acceptability of any of the technical options discussed. Every industrial operation requires consideration of worker safety and proper disposal of contaminants and waste products. Moreover, as work continues - including additional toxicity evaluation - more information on health, environmental and safety effects of alternatives and replacements will become available for use in selecting among the options discussed in this document.
    [Show full text]
  • INFORMATION to USERS the Most Advanced Technology Has Been Used to Photo­ Graph and Reproduce This Manuscript from the Microfilm Master
    INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 0011152 Chemistry derived from the tetracarbonylates of group 8, [M(CO)4]2- (M = Fe, Ru, Os): Syntheses, characterization and derivative chemistry of the metalladiboranes, [M(CO )4 (j7 2-B 2 Hs)]~ (M = Ru, Os).
    [Show full text]
  • Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks
    Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks Bonnie Choi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2018 © 2018 Bonnie Choi All rights reserved Abstract Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks Bonnie Choi This thesis explores the synthesis, properties, and potential applications of molecular clusters and the hierarchical solids that form when complementary clusters are combined. Chapter 1 introduces the diverse set of molecular clusters that I employ as nanoscale building blocks in the assembly of multifunctional materials. The core structure of the molecular clusters is closely related to the superconducting Chevrel phases. In discrete clusters, however, the core is passivated by organic ligands, which add stability and important functionalities. The molecular clusters have rich physical and chemical properties of their own, and I present some of the techniques used to investigate their intrinsic electronic properties. Finally, I review some of the modes by which the molecular clusters interact with another to assemble into hierarchical solids. The structural tunability and complexity embedded in the molecular clusters will enable the design of modular, well-defined, multifunctional materials with desirable electronic and magnetic properties. Chapter 2 details the synthesis and characterization of a family of manganese telluride molecular clusters. By varying the ligands that decorate the surface of the inorganic core, I show that the core structures can be tuned. The study of molecular clusters provides insight into how extended solids form. As such, I make structural comparisons of the clusters to known solid-state compounds.
    [Show full text]
  • Organo-Transition Metal Chemistry Some Studies
    ORGANO-TRANSITION METAL CHEMISTRY SOME STUDIES IN ORGANO-TRANSITION METAL CHEMISTRY By COLIN CRINDROD, B.Sc. A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University October 1966 MASTER OF SCIENCE (1966) MCMASTER UNIVERSITY (Chemistry) Hamilton, Ontario TITLE: Some Studies in Organo-Transition Metal Chemistry AUTHOR: Colin Grindrod, B.Sc. (Manchester University) SUPERVISOR: Dr. P. M. Maitlis NUMBER OF PAGES: iv, 71 SCOPE AND CONTENTS: The work described is an extension of the ligand-transfer reactions of substituted cyclobutadienes and cyclopentadienyls previously carried out by Maitlis et al. Efforts were directed particularly to ligand­ transfer reactions of n-allyl-transition metal complexes. The reactions of organic halides with metal carbonyls were also studied in attempts to isolate new organometallic derivatives. (ii) ACKNOWLEDGEMENTS The author wishes to express his sincere gratitude for the stimulating advice and constant encouragement provided by Dr. P. M. Maitlis, under whose guidance this work was carried out. Thanks are also extended to Imperial Oil Co. Ltd. for providing the financial support which made this study possible. (iii) CONTENTS Page INTRODUCTION Historical................................... 1 Cyclobutadiene-transition metal oompeeees... 7 Ligand-transfer reactions................... 10 Allyl-transition metal complexes............ 13 Reactions of metal carbonyls with organic halides.... ..................... 25 DISCUSSION
    [Show full text]