Assessing the Chemistry and Bioavailability of Dissolved Organic Matter from Glaciers and Rock 2 Glaciers 3

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Chemistry and Bioavailability of Dissolved Organic Matter from Glaciers and Rock 2 Glaciers 3 bioRxiv preprint doi: https://doi.org/10.1101/115808; this version posted April 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ASSESSING THE CHEMISTRY AND BIOAVAILABILITY OF DISSOLVED ORGANIC MATTER FROM GLACIERS AND ROCK 2 GLACIERS 3 4 1,2 1,3 3 1,4 5 Fegel, Timothy , Boot, Claudia M. , Broeckling, Corey D. , Hall, Ed K. 6 1. Natural Resource Ecology Laboratory, Colorado State University 2. U.S. Forest Service, 7 Rocky Mountain Research Station, 3. Department of Chemistry, Colorado State University 4. 8 Proteomics and Metabolomics Facility, Colorado State University 4. Department of Ecosystem 9 Science and Sustainability, Colorado State University 10 11 Tim Fegel [email protected] 12 13 14 Key Points: 15 Bioavailability of organic matter released from glaciers is greater than that of rock glaciers in the 16 Rocky Mountains. 17 The use of GC-MS for ecosystem metabolomics represents a novel approach for examining 18 complex organic matter pools. 19 Both glaciers and rock glaciers supply highly bioavailable sources of organic matter to alpine 20 headwaters in Colorado. 1 bioRxiv preprint doi: https://doi.org/10.1101/115808; this version posted April 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 21 Abstract 22 As glaciers thaw in response to warming, they release dissolved organic matter (DOM) to 23 alpine lakes and streams. The United States contains an abundance of both alpine glaciers and 24 rock glaciers. Differences in DOM composition and bioavailability between glacier types, like 25 rock and ice glaciers, remain undefined. To assess differences in glacier and rock glacier DOM 26 we evaluated bioavailability and molecular composition of DOM from four alpine catchments 27 each with a glacier and a rock glacier at their headwaters. We assessed bioavailability of DOM 28 by incubating each DOM source with a common microbial community and evaluated chemical 29 characteristics of DOM before and after incubation using untargeted gas chromatography mass 30 spectrometry based metabolomics (GC-MS). Prior to incubations, ice glacier and rock glacier 31 DOM had similar C:N ratios and chemical diversity, but differences in DOM composition. 32 Incubations with a common microbial community showed DOM from ice glacier meltwaters 33 contained a higher proportion of bioavailable DOM (BDOM) and resulted in greater bacterial 34 growth efficiency (BGE). After incubation, DOM composition from each source was statistically 35 indistinguishable. This study provides an example of how MS based metabolomics can be used 36 to assess effects of DOM composition on differences in bioavailability of DOM. Furthermore, it 37 illustrates the importance of microbial metabolism in structuring composition of DOM. Even 38 though rock glaciers had significantly less BDOM than ice glaciers, both glacial types still have 39 potential to be important sources of BDOM to alpine headwaters over the coming decades. 40 2 bioRxiv preprint doi: https://doi.org/10.1101/115808; this version posted April 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 41 1.Introduction 42 Ice glaciers (hereafter glaciers) are perennial ice structures that move and persist in areas where 43 annual snow accumulation is greater than annual snow ablation at decadal or longer time spans. 44 Rock glaciers are flowing bodies of permafrost, composed of coarse talus and granular regolith 45 both bound and lubricated by interstitial ice (Berthling, 2011). Both glaciers and rock glaciers 46 integrate atmospherically deposited chemicals with weathering products and release reactive 47 solutes to adjacent surface waters (Williams et al., 2007; Dubnick et al., 2010; Fellman et al., 48 2010; Stibal et al., 2010; Stubbins et al., 2012). On average, alpine glaciers appear to be 49 responsible for the release of a larger flux of carbon (0.58 +/- 0.07 Tg C) from melting ice 50 annually when compared to continental glaciers (Hood et al., 2015). Dissolved organic matter 51 (DOM) from large alpine glaciers of the European Alps and Alaska has been shown to be 52 bioavailable and thus can support microbial heterotrophy (Hood et al., 2009; Singer et al., 53 2012). In the contiguous United States, both glaciers and rock glaciers, each with distinct 54 geophysical attributes (Fegel et al. 2016), are common to many alpine headwaters, with rock 55 glaciers being an order of magnitude more abundant than glaciers. However, little is known 56 about the quantity or quality of DOM being released from these smaller glaciers and rock 57 glaciers in mountain headwater ecosystems of the western U.S. (Woo et al., 2012; Fegel et al., 58 2016). 59 Assessment of the bioavailability of aquatic DOM to date has largely relied on bioassays that 60 measure the rate and amount of DOM consumed over time (e.g. Amon and Benner, 1996; del 61 Giorgio and Cole, 1998; Guillemette and del Giorgio, 2011). Bioassays present difficulties in 62 assessing DOM consumption because each assessment requires an independent incubation, 63 creating the potential for confounding effects due to differences in the microbial communities 3 bioRxiv preprint doi: https://doi.org/10.1101/115808; this version posted April 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 64 among incubations. Broad molecular characterizations of DOM (Benner, 2002; Berggren and 65 del Giorgio, 2015) have also previously been applied to estimate bioavailable DOM (BDOM), 66 though these analyses often only address differences in bioavailability of either coarse 67 categories of organic molecules or individual model compounds rather than the composition of 68 the DOM pool as a whole (e.g., del Giorgio and Cole, 1998). Recently the research community 69 has begun to explore high resolution analytical chemistry to assess the molecular 70 characteristics of environmental DOM (e.g., Kujawinski, 2002; Kellerman et al., 2014, 2015; 71 Andrilli et al., 2015). Whereas no single method can identify the entire spectrum of compounds 72 present in an environmental DOM pool (Derenne and Tu, 2014), mass spectrometry (MS) has 73 the ability to define structural characteristics of thousands of individual compounds contained 74 within a single DOM sample. 75 There is a suite of challenges in trying to concurrently understand the composition and 76 bioavailability of DOM. Difficulties in experimentally linking the molecular characterization of 77 DOM pools to the proportion of BDOM are partly due to the highly diverse constituent 78 compounds that compose natural DOM and the inherent challenges in characterizing that 79 diversity (Derenne and Tu, 2014). In addition, different microbial communities may access 80 different components of the same DOM pool making it challenging to compare how composition 81 affects bioavailability among ecosystems. However, even in the face of these challenges some 82 broad patterns of the relationship between the composition and bioavailability of DOM are 83 beginning to emerge. For example, studies from glacial, estuarine, and marine environments 84 have shown a clear correlation between proteinaceous DOM and a high proportion of BDOM 85 (Andrilli et al., 2015). Understanding which constituent molecules influence the bioavailability 86 of DOM is an important step in understanding how DOM pools contribute to heterotrophy 4 bioRxiv preprint doi: https://doi.org/10.1101/115808; this version posted April 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 87 among aquatic ecosystems and how different components of DOM alter the residence time of 88 that DOM pool in the environment. 89 We hypothesized that differences in the origin of DOM between glaciers and rock glaciers 90 would result in differences in molecular composition of DOM between glacier types with the 91 potential to alter the proportion of BDOM. DOM derived from glaciers originates from in situ 92 microbial activity via phototrophy on the glacier surface, and byproducts of heterotrophic 93 bacterial activity in the glacier porewaters and subsurface (Anesio et al., 2009; Hood et al., 2009; 94 Singer et al., 2012; Fellman et al., 2015; Fegel et al., 2016). In addition, atmospheric deposition 95 of organic matter onto the glacier surface can be an important source of DOM to the glacier 96 meltwaters (Stubbins et al., 2012). DOM from rock glaciers is an amalgam of compounds 97 originating both from multicellular vegetation growing on the rock glacier surface and microbial 98 processing within the rock glacier itself (Wahrhaftig and Cox, 1959; Williams et al., 2007). 99 Previous research has shown that DOM released from glaciers and rock glaciers in the western 100 United States differ in their optical properties, with glaciers having higher amounts of protein- 101 like DOM than rock glaciers, as identified through fluorescence spectroscopy (Fegel et al., 102 2016). 103 In this study, we assessed differences in the composition of DOM between glaciers and rock 104 glaciers and asked which of those differences (if any) correspond to differences in the proportion 105 of BDOM from each glacier type.
Recommended publications
  • Mechanistic Aspects of the Reaction of Oxime Tosylates with Grignard Reagents
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1965 MECHANISTIC ASPECTS OF THE REACTION OF OXIME TOSYLATES WITH GRIGNARD REAGENTS STANFORD SALAVATORE PELOSI JR. Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation PELOSI, STANFORD SALAVATORE JR., "MECHANISTIC ASPECTS OF THE REACTION OF OXIME TOSYLATES WITH GRIGNARD REAGENTS" (1965). Doctoral Dissertations. 811. https://scholars.unh.edu/dissertation/811 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been 65-9084 microfilmed exactly as received PELOSI, Jr., Stanford Salvatore, 1938- MECHANISTIC ASPECTS OF THE REACTION OF OXIME TOSYLATES WITH GRIGNARD REAGENTS. i University of New Hampshire, Ph.D., 1965 ; Chemistry, organic i I i University Microfilms, Inc., Ann Arbor, Michigan i Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. MECHANISTIC ASPECTS OF THE REACTION OF OXIME TOSYLATES WITH GRIGNARD REAGENTS BY STANFORD SALVATORE PELOSI, JR. B. S., Boston College, 1960 A THESIS Submitted to the University of New Hampshire, In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Chemistry March, 1965 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This thesis has been examined .and approved. I | :.c < I ' l Y . 7 1 / 1 / Ctrvi HS Dat Reproduced with permission of the copyright owner.
    [Show full text]
  • Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I by V
    Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I By V. Vill, C. Bauhofer, G. Peters, H. Sajus, P. Weigner, LCI-Publisher and Chemistry Department of the University of Hamburg All printed index material has been used to build up the comprehensive Scidex database index developed by LCI Publisher GmbH, Hamburg For further information please visit www.lci-publisher.com From this database a CD-ROM and two online versions were derived. The first is attached to each of the printed subvolumes and the latter are offered for free use at the following addresses: Scidex Database online with graphical structure search on http://lb.chemie.uni-hamburg.de/ Or the easy to use html version on http://lb.chemie.uni-hamburg.de/static/ Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Index of Organic Compounds Subvolume A Compounds with 1 to 7 Carbon Atoms Editor: V. Vill Authors: V. Vill, G. Peters, H. Sajus 1 3 ISBN 3-540-66203-0 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Index of Organic Compounds A: Editor: V. Vill At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik.
    [Show full text]
  • CHEM 1411 Nomenclature Homework - Answers Part I
    1 CHEM 1411 Nomenclature Homework - Answers Part I 1. The following are a list of binary and pseudobinary ionic compounds. Write the name when the formula is given. Write the formula when the name is given. (a) AlCl3 aluminum chloride (k) rubidium oxide Rb2O (b) AuBr3 gold (III) bromide (l) chromium (III) selenide Cr2Se3 (c) Na2S sodium sulfide (m) barium iodide BaI2 (d) Cu3P2 copper (II) phosphide (n) copper (I) fluoride CuF (e) Fe(OH)2 iron (II) hydroxide (o) copper (II) fluoride CuF2 (f) NH4OH ammonium hydroxide (p) strontium cyanide Sr(CN)2 (g) Co(CH3COO)3 cobalt (III) acetate (q) mercury (II) bromide HgBr2 (h) Zn(SCN)2 zinc thiocyanate (r) mercury (I) bromide Hg2Br2 (i) CaCrO4 calcium chromate (s) magnesium permanganate Mg(MnO4)2 (j) K2Cr2O7 potassium dichromate (t) lithium nitride Li3N 2. The following are lists of covalent compounds. Write the name when a formula is given. Write the formula when given a name. (a) CSe2 carbon diselenide (h) dichlorine heptoxide Cl2O7 (b) SF6 sulfur hexafluoride (i) xenon tetrafluoride XeF4 (c) BrF5 bromine pentafluoride (j) carbon monoxide CO (d) P4O10 tetraphosphorous decoxide (k) oxygen O2 (e) Cl2O dichlorine oxide (l) diboron trioxide B2B O3 (f) NH3 ammonia (m) arsenic trifluoride AsF3 (g) N2 dinitrogen or nitrogen (n) diiodine I2 2 3. The following are lists of acids or acid-forming compounds. Write the name when the formula is given. Write the formula when the name is given. (a) H3PO2 hypophosphorous acid (k) hydrogen cyanide HCN (g) (b) H2SO4 sulfuric acid (l) periodic acid HIO4 (c) HClO hypochlorous acid (m) hypochlorous acid HClO (d) H3PO4 phosphoric acid (n) nitric acid HNO3 (e) HBrO4 perbromic acid (o) acetic acid CH3CO2H (f) HIO2 iodous acid (p) chloric acid HClO3 (g) HI (g) hydrogen iodide (q) perbromic acid HBrO4 (h) HI (aq) hydroiodic acid (r) hydrofluoric acid HF (aq) (i) HCN (aq) hydrocyanic acid (s) phosphorous acid H3PO3 (j) HBrO hypobromous acid (t) hydrosulfuric acid H2S (aq) 4.
    [Show full text]
  • Enhanced Isotopic Ratio Outlier Analysis (IROA) Peak Detection and Identification with Ultra-High Resolution GC-Orbitrap/MS
    H OH metabolites OH Article Enhanced Isotopic Ratio Outlier Analysis (IROA) Peak Detection and Identification with Ultra-High Resolution GC-Orbitrap/MS: Potential Application for Investigation of Model Organism Metabolomes Yunping Qiu 1 ID , Robyn D. Moir 2, Ian M. Willis 2, Suresh Seethapathy 3, Robert C. Biniakewitz 3 and Irwin J. Kurland 1,* 1 Stable Isotope and Metabolomics Core Facility, Diabetes Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; [email protected] 2 Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; [email protected] (R.D.M.); [email protected] (I.M.W.) 3 Thermo Fisher Scientific, Somerset, NJ 08873, USA; suresh.seethapathy@thermofisher.com (S.S.); [email protected] (R.C.B.) * Correspondence: [email protected]; Tel.: +1-718-678-1091 Received: 7 November 2017; Accepted: 10 January 2018; Published: 18 January 2018 Abstract: Identifying non-annotated peaks may have a significant impact on the understanding of biological systems. In silico methodologies have focused on ESI LC/MS/MS for identifying non-annotated MS peaks. In this study, we employed in silico methodology to develop an Isotopic Ratio Outlier Analysis (IROA) workflow using enhanced mass spectrometric data acquired with the ultra-high resolution GC-Orbitrap/MS to determine the identity of non-annotated metabolites. The higher resolution of the GC-Orbitrap/MS, together with its wide dynamic range, resulted in more IROA peak pairs detected, and increased reliability of chemical formulae generation (CFG). IROA uses two different 13C-enriched carbon sources (randomized 95% 12C and 95% 13C) to produce mirror image isotopologue pairs, whose mass difference reveals the carbon chain length (n), which aids in the identification of endogenous metabolites.
    [Show full text]
  • Supporting Information © Wiley-VCH 2006 69451 Weinheim, Germany
    Supporting Information © Wiley-VCH 2006 69451 Weinheim, Germany “Sulflower”: a new form of carbon sulfide Konstantin Yu. Chernichenko, Viktor V. Sumerin, Roman V. Shpanchenko, Elizabeth S. Balenkova, Valentine G. Nenajdenko* Carbon sulfide forms. Stable at usual conditions: [1] [2] [3] [4] 2. C3S8 C4S6 C4S6 C4S6 S S S S S S S S S S S S S S S S S S S S S S S S S S [5] [6] [5] [7] C5S7 C6S8 C6S8 C6S8 C6S10 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S [1] [8] [9, 10] C6S12 C8S8 C9S9 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S Polymeric forms: [11] [12] [13] [5] [6] 1. Black CS2 (CS)n (C3S2)n (C3S5)n C8S8 S S S S S S S S S S n S S S n Quantum chemical calculations: Density-functional calculations were performed within Perdew–Burke–Ernzerhof generalized gradient approximation[14] using scalar-relativistic[15] one-electron Hamiltonian and extended basis sets of Gaussian functions as implemented in a recent version of the original computer code.[16] We have used a preliminary version of scalar-relativistic basis sets of TZ2p, finite nucleus model was used. Fast riMP2 method[17] was used with cc-pVDZm basis set. We have calculated energy of unstrained C2S fragment from linear dependence of full energies of 2,3-b- annulated oligothiophenes C2+2nSnH4 (n=1…5) – starting from thiophene to helical pentathiophene: S S S S S S S S S S S S S S S n Full energies, Hartree PBE riMP2 1 -553.91315 -552.03413 2 -1029.26725 -1025.7063 3 -1504.62259 -1499.38155 4 -1979.97749 -1973.05662 5 -2455.33167 -2446.73137 PBE riMP2 -500 -1000 -1500 -2000 Full energy, Hartree -2500 1 2 3 4 5 n Graph linearizations give the energy of unstrained C2S unit in 2,3-b annulated oligothiophenes: E= -78.55825 - 475.35473·n (SD=3.72905E-4), PBE E= -78.35856 – 473.67448·n (SD=1.01E-3), riMP2 A good correlation between two methods has been achieved.
    [Show full text]
  • Important Features of the Potential Energy Surface of the Methylamine Plus O(1D) Reaction
    Physical Chemistry Chemical Physics Important Features of the Potential Energy Surface of the Methylamine Plus O(1D) Reaction Journal: Physical Chemistry Chemical Physics Manuscript ID CP-ART-09-2019-005039.R1 Article Type: Paper Date Submitted by the 17-Oct-2019 Author: Complete List of Authors: Wolf, Mark; University of Georgia , Center for Computational Quantum Chemsitry; Hoobler, Preston; Covenant College, Chemistry; University of Georgia Franklin College of Arts and Sciences, Center for Computational Quantum Chemistry Turney, Justin; University of Georgia, Center for Computational Chemistry Schaefer, Henry; University of Georgia, Computational Chemistry Page 1 of 13 Physical Chemistry Chemical Physics Journal Name Important Features of the Potential Energy Surface of the Methy- lamine Plus O(1D) Reaction † Mark E. Wolf, Preston R. Hoobler, Justin M. Turney, and Henry F. Schaefer III∗ This research presents an ab initio characterization of the potential energy surface for the methy- lamine plus 1D oxygen atom reaction, which may be relevant to interstellar chemistry. Ge- ometries and harmonic vibrational frequencies were determined for all stationary points at the CCSD(T)/aug-cc-pVTZ level of theory. The focal point method along with several additive correc- tions was used to obtain reliable CCSDT(Q)/CBS potential energy surface features. Extensive conformational analysis and intrinsic reaction coordinate computations were performed to ensure accurate chemical connectivity of the stationary points. Five minima were determined to be pos- sible products of this reaction and three novel transition states were found that were previously unreported or mislabeled in the literature. The pathways we present can be used to guide further searches for NH2 containing species in the interstellar medium.
    [Show full text]
  • Full Compositional Control of Pbs X Se 1− X Thin Films by the Use Of
    Dalton Transactions View Article Online PAPER View Journal | View Issue Full compositional control of PbSxSe1−x thin films by the use of acylchalcogourato lead(II) complexes Cite this: Dalton Trans., 2018, 47, 16938 as precursors for AACVD† Tagbo Emmanuel Ezenwa,a Paul D. McNaughter, *a James Raftery,a David J. Lewis a and Paul O’Brien *a,b Selenium and sulfur derivatives of lead(II) acylchalcogourato complexes have been used to deposit PbSxSe1−x thin films by AACVD. By variation of the mole ratio of sulfur and selenium precursors in the aerosol feed solution the full range of compositions of PbSxSe1−x was obtained, i.e. 0 ≥ x ≥ 1. The films Received 23rd August 2018, showed no contaminant phases demonstrating the potential for acylchalcogourato metal complexes as Accepted 26th September 2018 precursors for metal chalcogenide thin films. The crystal structure for bis[N,N-diethyl-N’-2- DOI: 10.1039/c8dt03443e naphthoylthioureato]lead(II) was solved and displayed the expected decreases in Pb–E bond lengths from rsc.li/dalton the previously reported selenium variant. Creative Commons Attribution 3.0 Unported Licence. – Introduction xanthates16 21 There are fewer reports on the use of single source precursors forming lead selenides due to the synthesis of Lead chalcogenide nanomaterials have potential within photo- noxious carbon diselenide when synthesising dithiocarbamates voltaic devices due to their advantageous bulk bandgaps in the and xanthates. N-Acyl chalcogoureas offer a convenient route to infra-red region (PbS = 0.41 eV, PbSe = 0.28 eV and PbTe = 0.31 acarbon–chalcogen double bond due to the availability and ease eV) and the ability to tune the band gap by quantum confine- of the use of potassium selenocyanate and potassium thio- This article is licensed under a ment.
    [Show full text]
  • Tables of Molecular Vibrational Frequencies: Part 6
    Tables of Molecular Vibrational Frequencies: Part 6 Cite as: Journal of Physical and Chemical Reference Data 2, 121 (1973); https://doi.org/10.1063/1.3253114 Published Online: 29 October 2009 T. Shimanouchi ARTICLES YOU MAY BE INTERESTED IN Tables of Molecular Vibrational Frequencies Part 5 Journal of Physical and Chemical Reference Data 1, 189 (1972); https:// doi.org/10.1063/1.3253098 Tables of molecular vibrational frequencies. Consolidated volume II Journal of Physical and Chemical Reference Data 6, 993 (1977); https:// doi.org/10.1063/1.555560 Tables of molecular vibrational frequencies Journal of Physical and Chemical Reference Data 7, 1323 (1978); https:// doi.org/10.1063/1.555587 Journal of Physical and Chemical Reference Data 2, 121 (1973); https://doi.org/10.1063/1.3253114 2, 121 © 1973 The U. S. Secretary of Commerce on behalf of the United States. Tables of Molecular Vibrational Frequencies Part 6 T.Shimanouchi Department o/Chemis.try, University o/Tokyo, Tokyo, Japan The compilations of fundamental vibrational frequencies of molecules previously published in the NSRDS-NBS publication series and in this journal are here extended to 55 additional molecules. Selected values of the fundamental vibrational frequencies are given for each molecule, together with observed infrared and Raman spectral data and citations to the original literature. The selection· of vibrational fundamentals has been based on careful studies of the spectral data and comprehensive normal-coordinate analyses. An estimate of the accuracy of the selected values is included. The tables provide a convenient source of information for those who require vibrational energy levels and related properties in molecular spectroscopy, thermodynamics, analytical chemistry, and other fields of physics and chemistry.
    [Show full text]
  • Carbon Dioxide - Wikipedia
    5/20/2020 Carbon dioxide - Wikipedia Carbon dioxide Carbon dioxide (chemical formula CO2) is a colorless gas with Carbon dioxide a density about 60% higher than that of dry air. Carbon dioxide consists of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (412 ppm) by volume, having risen from pre-industrial levels of 280 ppm.[8] Natural sources include volcanoes, hot springs and geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide is odorless at normally encountered concentrations, but at high concentrations, it has a sharp and acidic odor.[1] At such Names concentrations it generates the taste of soda water in the Other names [9] mouth. Carbonic acid gas As the source of available carbon in the carbon cycle, atmospheric Carbonic anhydride carbon dioxide is the primary carbon source for life on Earth and Carbonic oxide its concentration in Earth's pre-industrial atmosphere since late Carbon oxide in the Precambrian has been regulated by photosynthetic organisms and geological phenomena. Plants, algae and Carbon(IV) oxide cyanobacteria use light energy to photosynthesize carbohydrate Dry ice (solid phase) from carbon dioxide and water, with oxygen produced as a waste Identifiers product.[10] CAS Number 124-38-9 (http://ww w.commonchemistr CO2 is produced by all aerobic organisms when they metabolize carbohydrates and lipids to produce energy by respiration.[11] It is y.org/ChemicalDeta returned to water via the gills of fish and to the air via the lungs of il.aspx?ref=124-38- air-breathing land animals, including humans.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    : Organic Compounds op Selenium 165 I. ORGANIC COMPOUNDS OF SELENIUM W. E. Bradt and M. Van Valkenhurgh, University of Cincinnati Introduction. Because selenium and some of its compounds are now- available in considerable amounts at reasonable prices, the investigation of the preparation and properties of organic selenium compounds is quite feasible. In order to further this work, the senior author plans a series of papers which, when completed, will present: (a) a classification of the known organic selenium compounds based on the analogous oxygen and sulphur types, (b) a complete list of all known organic selenium compounds, (c) a resume of the chemistry and methods of preparation developed for each class of compounds, and (d) a com- plete bibliography for each known organic selenium compound. The physiological action of some of the more common inorganic selenium compounds is well known. Many organic selenium compounds are reported to exhibit valuable therapeutic and tinctorial properties. However, the investigation of these properties has been so incomplete that organic compounds of selenium are still only of scientific interest. It is hoped that a systematic presentation of the chemistry of organic selenium compounds, with a statement of the extent of the synthetic work accomplished to date, will create interest in developing the possibilities of service to mankind (dyes, medicinals etc.), which probably exist in this field. Investigation in this direction lends itself particularly to the worker who has available only limited equipment. The reactions can usually be conducted in apparatus which is always available or which may be easily prepared. Aliphatic Selenols In this group will be discussed compounds, represented by the following formulas, in which "R" is a methyl group, the hydrogen atoms of which may or may not be replaced by other groups.
    [Show full text]
  • Nuclear Magnetic Shielding Tensors for the Carbon, Nitrogen, and Selenium Nuclei of Selenocyanates — a Combined Experimental and Theoretical Approach
    Color profile: Disabled Composite Default screen 614 Nuclear magnetic shielding tensors for the carbon, nitrogen, and selenium nuclei of selenocyanates — a combined experimental and theoretical approach Guy M. Bernard, Klaus Eichele, Gang Wu, Christopher W. Kirby, and Roderick E. Wasylishen Abstract: The principal components of the carbon, nitrogen, and selenium chemical shift (CS) tensors for several solid selenocyanate salts have been determined by NMR measurements on stationary or slow magic-angle-spinning powder samples. Within experimental error, all three CS tensors are axially symmetric, consistent with the expected linear geometry of these anions. The spans (Ω) of the carbon and selenium CS tensors for the selenocyanate anion (SeCN–) are approximately 300 and 800 ppm, respectively, much less than the corresponding values for carbon diselenide (CSe2). This difference is a consequence of the difference in the CS tensor components perpendicular to the C∞ sym- metry axes in these systems. Ab initio calculations show that the orbital symmetries of these compounds are a signifi- σ π cant factor in the shielding. For CSe2, efficient mixing of the and orbitals results in a large paramagnetic contribution to the total shielding of the chemical shielding tensor components perpendicular to the molecular axis. Such mixing is less efficient for the SeCN–, resulting in a smaller paramagnetic contribution and hence in greater shielding in directions perpendicular to the molecular axis. Key words: selenocyanates, solid-state NMR, carbon shielding tensors, nitrogen shielding tensors, selenium shielding tensors, ab initio calculations. Résumé : À partir de mesures RMN sur des échantillons de poudre stationnaires ou à rotation lente à l’angle magique de plusieurs sélénocyanates solides, on en a déterminé les principaux composant des tenseurs des déplacements chimiques (DC) du carbone, de l’azote et du sélénium.
    [Show full text]
  • Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880–2002
    Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880–2002 James S. Chickosa… Department of Chemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121 William E. Acree, Jr.b… Department of Chemistry, University of North Texas, Denton, Texas 76203 ͑Received 17 June 2002; accepted 17 October 2002; published 21 April 2003͒ A compendium of vaporization enthalpies published within the period 1910–2002 is reported. A brief review of temperature adjustments of vaporization enthalpies from temperature of measurement to the standard reference temperature, 298.15 K, is included as are recently suggested reference materials. Vaporization enthalpies are included for organic, organo-metallic, and a few inorganic compounds. This compendium is the third in a series focusing on phase change enthalpies. Previous compendia focused on fusion and sublimation enthalpies. Sufficient data are presently available for many compounds that thermodynamic cycles can be constructed to evaluate the reliability of the measure- ments. A protocol for doing so is described. © 2003 American Institute of Physics. ͓DOI: 10.1063/1.1529214͔ Key words: compendium; enthalpies of condensation; evaporation; organic compounds; vaporization enthalpy. Contents inorganic compounds, 1880–2002. ............. 820 1. Introduction................................ 519 8. References to Tables 6 and 7.................. 853 2. Reference Materials for Vaporization Enthalpy Measurements.............................. 520 List of Figures 3. Heat Capacity Adjustments. ................. 520 1. A thermodynamic cycle for adjusting vaporization ϭ 4. Group Additivity Values for C (298.15 K) enthalpies to T 298.15 K.................... 521 pl 2. A hypothetical molecule illustrating the different Estimations................................ 521 hydrocarbon groups in estimating C ........... 523 5. A Thermochemical Cycle: Sublimation, p Vaporization, and Fusion Enthalpies...........
    [Show full text]