Food Flavonoid Ligand Structure/Estrogen Receptor-Α Affinity

Total Page:16

File Type:pdf, Size:1020Kb

Food Flavonoid Ligand Structure/Estrogen Receptor-Α Affinity Food and Chemical Toxicology 129 (2019) 328–336 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Food flavonoid ligand structure/estrogen receptor-α affinity relationships – toxicity or food functionality? T ∗ Hui Ye, Ian C. Shaw Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand ARTICLE INFO ABSTRACT Keywords: In silico molecular modelling is used to study interactions between flavonoid phytoestrogens and estrogen re- Food functionality and toxicity ceptor (ER)α. Twenty flavonoids from foods were studied; e.g., genistein from soy, naringenin from grapefruit, estrogen receptor α phloretin from pears, chrysin from oyster mushrooms. These potential ligands' molecular attributes and their dietary phytoestrogen spatial arrangements that favour binding to the ligand binding cleft (LBC) of ERα are identified, and Docking binding affinity Scores calculated. The Docking Score order is the same as the estrogenicity order for 8 of the flavonoids studied structural features in detail. The number and position of flavonoid ring hydroxyls influence the Docking Scores which might relate flavonoids to ERα′s bio-activity. Hydrophobic interactions between ligands and ERα are also important; the number of rotatable CeC bonds in ligands likely affects the magnitude of hydrophobic interactions and ligand fit. Our findings suggest that flavonoids with diverse structural features could have different binding energies and binding affinities with ERα, which might confer different functionalities and toxicities. 1. Introduction separated by 9.6 Å of hydrophobicity (Brzozowski et al., 1997). Mole- cules with similar molecular attributes (i.e. estrogen mimics) activate A better understanding of the molecular mechanisms underlying ERs, but to a lesser extent than E2. For example, the estrogen mimic food functionality is crucial to our knowledge of potential health risks genistein (a phytoestrogen; Fig. 1) from soy has a hydroxyl separation − and benefits. However, such studies are often time consuming and ex- of 11.6 Å: genistein has a relative estrogenicity of 3.9 × 10 5 (where pensive. Therefore, the application of in silico modelling studies to in- E2 = 1) (Berckmans et al., 2007) because its ER binding characteristics vestigate receptor-mediated mechanisms might be useful in exploring are not ideal. food component functionality. Flavonoids are important food components; they include subclasses In this paper, we will focus on estrogen receptor (ER)-mediated based on their chemical structures; for example, flavone, flavonol, and mechanisms of food functionality and the use of in silico molecular isoflavone (Table 1). Flavonoids are present in many commonly con- modelling (Schrödinger platform) to give insights into the potential sumed fruits, vegetables and herbs (e.g., apigenin in parsley, quercetin benefits and risks of estrogen-mimicking (xenoestrogen) food compo- in red onion, genistein in soy, bergamottin in grapefruit) (Bailey et al., nents. 2003), and can mimic E2 (Fig. 1) and thus activate ERs (Harris et al., ERs occur as two isoforms (ERα and ERβ) and are present in many 2005). The binding affinities of both E2 and estrogen mimics to ER cell types (Heldring et al., 2007); e.g. ERα predominates in mammary isoforms are different this means that they will have differential tissue- cells and ERβ in colon cells (Kuiper et al., 1997). ERs are important in based biological activity which is dependent on the distribution of ER growth and development (Mosselman et al., 1996) with functions far isoforms in the tissue (Kuiper et al., 1997). Interestingly, ERβ (pre- exceeding the conventional concepts of sex hormone receptors (Ye dominates in colon cells) (Kuiper et al., 1997) provides a more suitable et al., 2018). The most potent natural ligand of ERs is 17β-estradiol (E2, binding environment for flavonoids and so might play an important role Fig. 1) and when bound to the receptor it initiates a sequence of events in flavonoid-containing colon-mediated food functionality. that leads to regulation of genes involved in growth and development The intimate interactions between flavonoids and ERα have been and expression of sexual characteristics (Reid et al., 2002). In order to more extensively studied than their ERβ interactions because of the activate ERs the ligand ideally has two hydroxyl groups, which hy- dominant role of ERα in some important diseases (Ye et al., 2018) in- drogen bond to amino acid residues in the ligand binding cleft (LBC), cluding breast cancer (more than 80% of human breast cancers are ERα ∗ Corresponding author. E-mail address: [email protected] (I.C. Shaw). https://doi.org/10.1016/j.fct.2019.04.008 Received 23 January 2019; Received in revised form 27 March 2019; Accepted 8 April 2019 Available online 12 April 2019 0278-6915/ © 2019 Published by Elsevier Ltd. H. Ye and I.C. Shaw Food and Chemical Toxicology 129 (2019) 328–336 based ERα cell assays. They concluded that a better fit to the ERα LBC and a greater estrogenicity was associated with longer molecules with hydroxyl groups that could interact with the LBC by forming hydrogen bonds. In this paper, we report the structure-affinity relationship between ERα and flavonoid ligands in silico (using the Schrödinger platform). We use these findings to better understand flavonoid estrogenicity and, importantly, the estrogenicity changes that might result following fla- vonoid metabolism (e.g., by the gut microbiome); we discuss our findings in the context of food functionality and toxicity. 2. Experimental 2.1. In silico modelling studies The molecular docking studies were carried out using Schrödinger Small-Molecule Drug Discovery Suit 2017–1 (Schrödinger LLC, New York, USA) to determine the likelihood that the studied molecule (li- gand) would bind to the LBC of ERα. Maestro (Schrödinger Release, 2017–1: Maestro, Schrödinger LLC, New York, NY, 2017) was used as the interface for preparing ERα and ligands for study. 2.2. Protein preparation The X−ray crystallographic coordinate of ERα were taken from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (http://www.rcsb.org), the X-ray crystal structures of ERα complexed with ligands (e.g., genistein in PDB entry 1 × 7R) were used. Protein fragment crystals are derived from different polypeptides of the ERα protein according to the particular preparative methodolo- gies. This means that they might have different polypeptide chains and Fig. 1. Top: Two-dimensional structures of E2 (A) and genistein (B) showing each chain has a docked ligand (e.g. GEN). One of these chains was that E2’s two hydroxyl have approximately the same hydrophobic separations arbitrarily used as the ligand–receptor subunit for these docking stu- ’ as 2 of genistein s hydroxyls. Bottom: three-dimensional structures of E2 (C) dies, others were deleted. Missing amino acid residues (Ser 305, Tyr and genistein (D) to show the spatial alignment of their hydroxyl groups. These 331, Asp 332, Pro 333, Thr 334, Arg 335, Pro 336, Phe 337, Arg 548, commonalities of special arrangement of hydroxyls explain why genistein is an Leu 549) based on ERα′s primary sequence were added to complete the estrogen mimic. protein structure using the Schrödinger ‘Prime’ command. Besides the ligand, a single water molecule hydrogen bonded to Arg 394 and Glu positive) (Turner et al., 2015), atherosclerosis (Evangelopoulos et al., 353 was kept because it is important in ligand binding)− other water α′ 2003), ovarian cancer (Lu et al., 2006), and ER s potential role in molecules (e.g., solvent water) were removed (Manas et al., 2004). diabetes because of its role in regulation of glucose homeostasis Restrained Minimization was run to provide controls for optimizing the (Bryzgalova et al., 2006). corrected structure, relieving any strain and fine−tuning the placement Since there is more structural information (e.g., X-ray crystal- of specific groups (e.g., hydroxyls). Hydrogen atoms were always op- α β lography) (Brzozowski et al., 1997); for ER than ER , we are able to timized fully, which allows relaxation of the H-bond network and al- α – construct a good ER in silico model for this reason we have focused leviates potential steric clashes by user–selected root–mean–square α our food in silico functionality molecular mechanism studies on ER / deviations (RMSD) with a tolerance of 0.3 Å (Ignatowicz and Baer- fl food avonoid interactions. Dubowska, 2001). In the context of receptor (e.g., ERα)-mediated biological activity, ffi the structure-a nity relationship is the interdependency between li- 2.3. Receptor Grid Generation gand structures and receptor binding affinity (i.e. ligand/receptor fit) ffi (Ye et al., 2018). Structure-a nity relationships are good predictors of The receptor grid for docking studies was set up and generated from biological activity (including toxicity) and are useful screening methods the Receptor Grid Generation panel of Glide (Schrödinger Release, to select potential new receptor-mediated compound for pharmaceu- 2017–1: Glide, Schrödinger LLC, New York, NY, 2017). The natural LBC tical development (Hall et al., 2003). This has led to in silico studies was used for these docking studies, but the original bound ligand (e.g., becoming a key tool in drug discovery and development (Ekins et al., GEN) was excluded; this determines the position and size of the active 2007) - our studies extend this thinking to food functionality. site (i.e. the LBC) for ligands docking. Flavonoids are important food components that impart significant biological activity including estrogenicity, which is a key factor in food 2.4. Preparation of ligands functionality (e.g., isoflavone-rich bread is used as partial ‘hormone’ replacements in peri- and postmenopausal women (Simons et al., In this study, 20 flavonoids from different subclasses were selected α 2000)). Further to this, Zhang et al. (2018) studied both ER interac- as potential ligands for ERα.
Recommended publications
  • Mechanisms of Toxic Action of the Flavonoid Quercetin and Its Phase II Metabolites
    Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Hester van der Woude Promotor: Prof. Dr. Ir. I.M.C.M. Rietjens Hoogleraar in de Toxicologie Wageningen Universiteit Co-promotor: Dr. G.M. Alink Universitair Hoofddocent, Sectie Toxicologie Wageningen Universiteit. Promotiecommissie: Prof. Dr. A. Bast Universiteit Maastricht Dr. Ir. P.C.H. Hollman RIKILT Instituut voor Voedselveiligheid, Wageningen Prof. Dr. Ir. F.J. Kok Wageningen Universiteit Prof. Dr. T. Walle Medical University of South Carolina, Charleston, SC, USA Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Hester van der Woude Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 7 april 2006 des namiddags te half twee in de Aula Title Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Author Hester van der Woude Thesis Wageningen University, Wageningen, the Netherlands (2006) with abstract, with references, with summary in Dutch. ISBN 90-8504-349-2 Abstract During and after absorption in the intestine, quercetin is extensively metabolised by the phase II biotransformation system. Because the biological activity of flavonoids is dependent on the number and position of free hydroxyl groups, a first objective of this thesis was to investigate the consequences of phase II metabolism of quercetin for its biological activity. For this purpose, a set of analysis methods comprising HPLC-DAD, LC-MS and 1H NMR proved to be a useful tool in the identification of the phase II metabolite pattern of quercetin in various biological systems.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • An in Silico Study of the Ligand Binding to Human Cytochrome P450 2D6
    AN IN SILICO STUDY OF THE LIGAND BINDING TO HUMAN CYTOCHROME P450 2D6 Sui-Lin Mo (Doctor of Philosophy) Discipline of Chinese Medicine School of Health Sciences RMIT University, Victoria, Australia January 2011 i Declaration I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at RMIT university or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at RMIT university or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project‘s design and conception or in style, presentation and linguistic expression is acknowledged. PhD Candidate: Sui-Lin Mo Date: January 2011 ii Acknowledgements I would like to take this opportunity to express my gratitude to my supervisor, Professor Shu-Feng Zhou, for his excellent supervision. I thank him for his kindness, encouragement, patience, enthusiasm, ideas, and comments and for the opportunity that he has given me. I thank my co-supervisor, A/Prof. Chun-Guang Li, for his valuable support, suggestions, comments, which have contributed towards the success of this thesis. I express my great respect to Prof. Min Huang, Dean of School of Pharmaceutical Sciences at Sun Yat-sen University in P.R.China, for his valuable support.
    [Show full text]
  • Inhibitory Effect of Acacetin, Apigenin, Chrysin and Pinocembrin on Human Cytochrome P450 3A4
    ORIGINAL SCIENTIFIC PAPER Croat. Chem. Acta 2020, 93(1), 33–39 Published online: August 03, 2020 DOI: 10.5562/cca3652 Inhibitory Effect of Acacetin, Apigenin, Chrysin and Pinocembrin on Human Cytochrome P450 3A4 Martin Kondža,1 Hrvoje Rimac,2,3 Željan Maleš,4 Petra Turčić,5 Ivan Ćavar,6 Mirza Bojić2,* 1 University of Mostar, Faculty of Pharmacy, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina 2 University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, A. Kovačića 1, 10000 Zagreb, Croatia 3 South Ural State University, Higher Medical and Biological School, Laboratory of Computational Modeling of Drugs, 454000 Chelyabinsk, Russian Federation 4 University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, Schrottova 39, 10000 Zagreb, Croatia 5 University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmacology, Domagojeva 2, 10000 Zagreb, Croatia 6 University of Mostar, Faculty of Medicine, Kralja Petra Krešimira IV bb, 88000 Mostar, Bosnia and Herzegovina * Corresponding author’s e-mail address: [email protected] RECEIVED: June 26, 2020 REVISED: July 28, 2020 ACCEPTED: July 30, 2020 Abstract: Cytochrome P450 3A4 is the most significant enzyme in metabolism of medications. Flavonoids are common secondary plant metabolites found in fruits and vegetables. Some flavonoids can interact with other drugs by inhibiting cytochrome P450 enzymes. Thus, the objective of this study was to determine inhibition kinetics of cytochrome P450 3A4 by flavonoids: acacetin, apigenin, chrysin and pinocembrin. For this purpose, testosterone was used as marker substrate, and generation of the 6β-hydroxy metabolite was monitored by high performance liquid chromatography coupled with diode array detector.
    [Show full text]
  • Cphi & P-MEC China Exhibition List展商名单version版本20180116
    CPhI & P-MEC China Exhibition List展商名单 Version版本 20180116 Booth/ Company Name/公司中英文名 Product/产品 展位号 Carbosynth Ltd E1A01 Toronto Research Chemicals Inc E1A08 SiliCycle Inc. E1A10 SA TOURNAIRE E1A11 Indena SpA E1A17 Trifarma E1A21 LLC Velpharma E1A25 Anuh Pharma E1A31 Chemclone Industries E1A51 Hetero Labs Limited E1B09 Concord Biotech Limited E1B10 ScinoPharm Taiwan Ltd E1B11 Dongkook Pharmaceutical Co., Ltd. E1B19 Shenzhen Salubris Pharmaceuticals Co., Ltd E1B22 GfM mbH E1B25 Leawell International Ltd E1B28 DCS Pharma AG E1B31 Agno Pharma E1B32 Newchem Spa E1B35 APEX HEALTHCARE LIMITED E1B51 AMRI E1C21 Aarti Drugs Limited E1C25 Espee Group Innovators E1C31 Ruland Chemical Co., Ltd. E1C32 Merck Chemicals (Shanghai) Co., Ltd. E1C51 Mediking Pharmaceutical Group Ltd E1C57 珠海联邦制药股份有限公司/The United E1D01 Laboratories International Holdings Ltd. FMC Corporation E1D02 Kingchem (Liaoning) Chemical Co., Ltd E1D10 Doosan Corporation E1D22 Sunasia Co., Ltd. E1D25 Bolon Pharmachem Co., Ltd. E1D26 Savior Lifetec Corporation E1D27 Alchem International Pvt Ltd E1D31 Polish Investment and Trade Agency E1D57 Fischer Chemicals AG E1E01 NGL Fine Chem Limited E1E24 常州艾柯轧辊有限公司/ECCO Roller E1E25 Linnea SA E1E26 Everlight Chemical Industrial Corporation E1E27 HARMAN FINOCHEM E1E28 Zhechem Co Ltd E1F01 Midas Pharma GmbH Shanghai Representativ E1F03 Supriya Lifescience Ltd E1F10 KOA Shoji Co Ltd E1F22 NOF Corporation E1F24 上海贺利氏工业技术材料有限公司/Heraeus E1F26 Materials Technology Shanghai Ltd. Novacyl Asia Pacific Ltd E1F28 PharmSol Europe Limited E1F32 Bachem AG E1F35 Louston International Inc. E1F51 High Science Co Ltd E1F55 Chemsphere Technology Inc. E1F57a PharmaCore Biotech Co., Ltd. E1F57b Rockwood Lithium GmbH E1G51 Sarv Bio Labs Pvt Ltd E1G57 抗病毒类、抗肿瘤类、抗感染类和甾体类中间体、原料药和药物制剂及医药合约研发和加工服务 上海创诺医药集团有限公司/Shanghai Desano APIs and Finished products of ARV, Oncology, Anti-infection and Hormone drugs and E1H01 Pharmaceuticals Co., Ltd.
    [Show full text]
  • Review Article Interactions Between CYP3A4 and Dietary Polyphenols
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity Volume 2015, Article ID 854015, 15 pages http://dx.doi.org/10.1155/2015/854015 Review Article Interactions between CYP3A4 and Dietary Polyphenols Loai Basheer and Zohar Kerem Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel Correspondence should be addressed to Zohar Kerem; [email protected] Received 14 October 2014; Revised 15 December 2014; Accepted 19 December 2014 Academic Editor: Cristina Angeloni Copyright © 2015 L. Basheer and Z. Kerem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ThehumancytochromeP450enzymes(P450s)catalyzeoxidativereactionsofabroadspectrumofsubstratesandplayacritical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4.
    [Show full text]
  • Hesperidin Is a Plant Flavanone (Subclass of Flavonoids) Predominantly and Abundantly Found in Citrus Fruits [USDA]
    Hesperidin is a plant flavanone (subclass of flavonoids) predominantly and abundantly found in citrus fruits [USDA]. In nature, most flavonoids are bound to a sugar moiety and are called the glycosides. Hesperidin is also a glycoside composed of the flavanone hesperetin (aglycone) and the disaccharide rutinose (rhamnose linked to glucose). Hesperidin’s name was derived from the word “hesperidium” which refers to fruit produced by citrus trees – lemons, limes, oranges, tangerines, the main source of hesperidin. Its highest concentrations are found in citrus fruit peels (see Fig.2). For instance, peels from tangerines contain hesperidin the equivalent of 5-10 % of their dry mass 109. Hesperidin plays a protective role against fungal and other microbial infections in plants 39,116. Apart from its physiological antimicrobial activity, decades of research revealed its many therapeutic applications in prevention and treatment of many human disorders. Most of these benefits are attributed to its antioxidant and anti-inflammatory properties. Interestingly, a French study involving human volunteers clearly demonstrated that consumption of orange juice or hesperidin alone for 4 weeks may induce changes in the expression of 3422 and 1819 genes, respectively 125. This study provided an explanation of the molecular mechanisms behind hesperidin’s cardiovascular protective effects. Also, neuroprotective properties of hesperidin have gained attention of scientists during the last decade as this compound demonstrated a wide range of benefits in a variety of neuronal conditions from anxiety and depression to Alzheimer's and Parkinson's diseases 153. Additional benefits that come from 1 hesperidin consumption include radio- and UV-protection, anti-diabetic, anti-allergic, anti- osteoporotic, and anti-cancerous effects.
    [Show full text]
  • Science Based Authentication of Dietary Supplements
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2010 Science Based Authentication of Dietary Supplements: Studies on the Chemical Constituents, Analytical Method and Biological Activities of Scutellaria Spp and Pfaffiaaniculata P Jing Li Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Plant Sciences Commons Recommended Citation Li, Jing, "Science Based Authentication of Dietary Supplements: Studies on the Chemical Constituents, Analytical Method and Biological Activities of Scutellaria Spp and Pfaffiaaniculata P " (2010). Electronic Theses and Dissertations. 179. https://egrove.olemiss.edu/etd/179 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. SCIENCE BASED AUTHENTICATION OF DIETARY SUPPLEMENTS ---STUDIES ON THE CHEMICAL CONSTITUENTS, ANALYTICAL METHOD AND BIOLOGICAL ACTIVITIES OF SCUTELLARIA SPP AND PFAFFIA PANICULATA KUNTZE A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Pharmacognosy The University of Mississippi JING LI Nov. 2010 Copyright © 2010 by Jing Li All rights reserved ii ABSTRACT During the last decade, the use of herbal medicine has expanded globally and gained popularity. With the tremendous expansion in the use of herbal medicine worldwide, safety and efficacy as well as quality control of herbal medicines have become more and more issues of concern for both health authorities and the public. Although herbal medicine has been in use for hundreds to thousands years, very limited science-based data exist to explicit its chemical constituents, pharmacological activities and toxicity.
    [Show full text]
  • Effects of Diosmetin on Nine Cytochrome P450 Isoforms, Ugts
    Toxicology and Applied Pharmacology 334 (2017) 1–7 Contents lists available at ScienceDirect Toxicology and Applied Pharmacology journal homepage: www.elsevier.com/locate/taap Effects of diosmetin on nine cytochrome P450 isoforms, UGTs and three MARK drug transporters in vitro Jun-Jun Chena,1, Jing-Xian Zhanga,1, Xiang-Qi Zhanga, Mei-Juan Qib, Mei-Zhi Shia, Jiao Yanga, ⁎ Ke-Zhi Zhangc,d, Cheng Guoa, Yong-Long Hana, a Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China b College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China c State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China d KG Pharma Limited, Floor 2, Building 3, No. 5-13 Wuhua Road, Chancheng, Foshan 528000, China ARTICLE INFO ABSTRACT Keywords: Diosmetin (3′, 5, 7-trihydroxy-4′-methoxyflavone), a natural flavonoid from traditional Chinese herbs, has been Diosmetin used in various medicinal products because of its anticancer, antimicrobial, antioxidant, estrogenic and anti- Cytochrome P450 inflammatory activity. However, flavonoids could affect the metabolic enzymes and cause drug-drug interactions UDP-glucuronyltransferases (DDI), reducing the efficacy of co-administered drugs and potentially resulting in serious adverse reactions. To Hepatic uptake transporters evaluate its potential to interact with co-administered drugs, the IC value of phase I cytochrome P450 enzymes Drug-drug interactions 50 (CYPs), phase II UDP-glucuronyltransferases (UGTs) and hepatic uptake transporters (organic cation transporters (OCTs), organic anion transporter polypeptides (OATPs) and Na+-taurocholate cotransporting polypeptides (NTCPs)) were examined in vitro by LC-MS/MS.
    [Show full text]
  • Diosmetin and Tamarixetin (Methylated Flavonoids): a Review on Their Chemistry, Sources, Pharmacology, and Anticancer Properties
    Journal of Applied Pharmaceutical Science Vol. 11(03), pp 022-028 March, 2021 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2021.110302 ISSN 2231-3354 Diosmetin and tamarixetin (methylated flavonoids): A review on their chemistry, sources, pharmacology, and anticancer properties Eric Wei Chiang Chan1*, Ying Ki Ng1, Chia Yee Tan1, Larsen Alessandro1, Siu Kuin Wong2, Hung Tuck Chan3 1Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia. 2School of Foundation Studies, Xiamen University Malaysia, Sunsuria, Malaysia. 3Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan. ARTICLE INFO ABSTRACT Received on: 21/10/2020 This review begins with an introduction to the basic skeleton and classes of flavonoids. Studies on flavonoids have Accepted on: 26/12/2020 shown that the presence or absence of their functional moieties is associated with enhanced cytotoxicity toward cancer Available online: 05/03/2021 cells. Functional moieties include the C2–C3 double bond, C3 hydroxyl group, and 4-carbonyl group at ring C and the pattern of hydroxylation at ring B. Subsequently, the current knowledge on the chemistry, sources, pharmacology, and anticancer properties of diosmetin (DMT) and tamarixetin (TMT), two lesser-known methylated flavonoids with Key words: similar molecular structures, is updated. DMT is a methylated flavone with three hydroxyl groups, while TMT is Methylated flavonoids, a methylated flavonol with four hydroxyl groups. Both DMT and TMT display strong cytotoxic effects on cancer diosmetin, tamarixetin, cell lines. Studies on the anticancer effects and molecular mechanisms of DMT included leukemia and breast, liver, cytotoxic, anti-cancer effects. prostate, lung, melanoma, colon, and renal cancer cells, while those of TMT have only been reported in leukemia and liver cancer cells.
    [Show full text]
  • Oral Care Compositions Containing Free-B-Ring Flavonoids and Flavans
    (19) & (11) EP 2 308 565 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.04.2011 Bulletin 2011/15 A61Q 11/02 (2006.01) A61Q 11/00 (2006.01) A61K 8/19 (2006.01) A61K 8/21 (2006.01) (2006.01) (2006.01) (21) Application number: 11151708.2 A61K 8/25 A61K 8/27 A61K 8/29 (2006.01) A61K 8/49 (2006.01) (2006.01) (2006.01) (22) Date of filing: 21.12.2005 A61K 8/81 A61P 29/00 (84) Designated Contracting States: • Viscio, David AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Monmouth Junction, NJ 08852 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Gaffar, Abdul SK TR Princeton, NJ 08540 (US) • Mello, Sarita V. (30) Priority: 22.12.2004 US 639331 P Somerset, NJ 08873 (US) 12.12.2005 US 301098 • Arvanitidou, Evangelia S. Princeton, NJ 08540 (US) (62) Document number(s) of the earlier application(s) in • Prencipe, Michael accordance with Art. 76 EPC: West Windsor, NJ 08550 (US) 05855133.4 / 1 827 608 (74) Representative: Jenkins, Peter David (71) Applicant: Colgate-Palmolive Company Page White & Farrer New York NY 10022-7499 (US) Bedford House John Street (72) Inventors: London WC1N 2BF (GB) • Xu, Guofeng Princeton, NJ 08542 (US) Remarks: • Boyd, Thomas, J. This application was filed on 21-01-2011 as a Metuchen, NJ 08840 (US) divisional application to the application mentioned • Hao, Zhigang under INID code 62. North Brunswick, NJ 08902 (US) (54) ORAL CARE COMPOSITIONS CONTAINING FREE-B-RING FLAVONOIDS AND FLAVANS (57) Oral care compositions containing: a free-B-ring flavonoid and a flavan; as well as at least one bioavailability- enhancing agent are provided.
    [Show full text]
  • A Review of the Most Important Natural Antioxidants and Effective Medicinal Plants in Traditional Medicine on Prostate Cancer and Its Disorders
    J Herbmed Pharmacol. 2020; 9(2): x-x. http://www.herbmedpharmacol.com doi: 10.15171/jhp.2020.xx Journal of Herbmed Pharmacology A review of the most important natural antioxidants and effective medicinal plants in traditional medicine on prostate cancer and its disorders Gholam Basati1 ID , Pardis Ghanadi2, Saber Abbaszadeh3* ID 1Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran 2Medical Student, Lorestan University of Medical Sciences, Khorramabad, Iran. 3Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran A R T I C L E I N F O A B S T R A C T Article Type: Herbal plants can be used to treat and prevent life-threatening diseases, such as prostate Review cancer, infections and other diseases. The findings from traditional medicine and the use of medicinal plants can help control and treat most problems due to prostate diseases. The Article History: aim of this study was to identify and report the most important medicinal plants that affect Received: 19 July 2019 prostate disorders. Based on the results of the review of numerous articles indexed in the Accepted: 28 October 2019 databases ISI, Scopus, PubMed, Google Scholar, etc., a number of plants have been reported to be used in the treatment and prevention of diseases, inflammation, infection, and cancer of Keywords: the prostate gland. The plants include Panax ginseng, Arum palaestinum, Melissa officinalis, Prostate cancer Syzygium paniculatum, Coptis chinensis, Embelia ribes, Scutellaria baicalensis, Tripterygium Inflammation wilfordii, Salvia triloba, Ocimum tenuiflorum, Psidium guajava, Ganoderma lucidum, Litchi Prostatitis chinensis, Saussurea costus, Andrographis paniculata, Magnolia officinalis and Prunus Medicinal plants africana.
    [Show full text]