Integrative Approaches for Gene and Molecular Pathway Analysis in Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Approaches for Gene and Molecular Pathway Analysis in Cancer Integrative approaches for gene and molecular pathway analysis in cancer Xavier Solé Acha ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora. WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading this thesis by the TDX (www.tdx.cat) service has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. INTEGRATIVEAPPROACHESFORGENEAND MOLECULAR PATHWAY ANALYSIS IN CANCER mètodes integratius per a l’anàlisi de gens i rutes moleculars en càncer Programa de Doctorat en Genètica Departament de Ciències Clíniques Facultat de Medicina Universitat de Barcelona XAVIER SOLÉ ACHA Barcelona, Gener de 2012 INTEGRATIVEAPPROACHESFORGENEAND MOLECULAR PATHWAY ANALYSIS IN CANCER Memòria presentada per XAVIER SOLÉ ACHA Per optar al Grau de DOCTOR Tesi doctoral realitzada sota la direcció del Dr. Víctor Raúl Moreno Aguado i del Dr. Miguel Ángel Genestar Pujana a la Unitat de Biomarcadors i Susceptibilitat de l’Institut Català d’Oncologia. Tesi adscrita al Departament de Ciències Clíniques de la Facultat de Medicina, Universitat de Barcelona. Programa de Genètica, bienni 2001-2003 (RD 778/1998). Víctor Moreno Aguado Xavier Solé Acha Miguel A. Genestar Pujana Co-director Doctorand Co-director Barcelona, Gener de 2012 Xavier Solé Acha: Integrative approaches for gene and molecular pathway analysis in cancer, Tesi Doctoral. ©Universitat de Barcelona, Gener de 2012. Als meus pares. Aquesta tesi existeix gràcies a vosaltres. A mi abuelo Gaspar y a mi tío Ramón. Por la ilusión que sé que les habría hecho verla. GENERALCONTENTS Acknowledgements ix Preface xv Catalan Summary xix Detailed contents xxxvii List of Figures xxxix List of Acronyms xl List of Genes xlii Introduction 1 Rationale 41 Results 45 Closing 95 Addenda 139 vii “You take the blue pill — the story ends, you wake up in your bed and believe whatever you want to believe. You take the red pill — you stay in Wonderland and I show you how deep the rabbit-hole goes”. — Morpheus to Neo, in "The Matrix". AGRAÏMENTS Sempre que he llegit els agraïments de tesis alienes (reconeguem-ho, és la part més llegida de les tesis) he pensat que arribar a aquest moment devia ser quelcom especial. Moment de prendre aire i fer una mirada cap enrere, i alhora inevitablement moment de tancar una etapa i mirar al fu- tur amb il·lusions renovades per encetar la recerca de noves experiències. A més de ser aquest punt d’inflexió, el moment d’escriure els agraï- ments d’una tesi és doblement grat. Per un costat, significa que el dur i llarg procés que suposa aquesta tasca gairebé arriba a la seva fi. Per altra banda, permet agrair-ho com cal a totes les persones que al llarg d’aquesta travessia han ajudat i col·laborat amb la causa. Cal dir que aquesta tesi no és en cap cas fruit i mèrit exclusiu del doctorand, sinó que és la suma de moltes hores d’ajuda de moltes persones. Ja per avançat vull donar unes gràcies immenses a TOTES les persones que hi han contribuït. Per descomptat, la responsabilitat de qualsevol error la té exclusivament la persona que es dirigeix a vosaltres. En primer lloc, vull agrair al Xavier Messeguer l’oportunitat que em va donar de saciar el meu cuquet curiós i poder dur a terme un projecte de bioinformàtica a la Facultat d’Informàtica de Barcelona. Recordo amb molt d’afecte les hores que ens vam passar discutint l’algorisme de MA- LIG i resolent plegats els problemes que anaven sortint. Gràcies a ell em vaig adonar que m’encantava la bioinformàtica, la recerca, i que volia triar la pastilla vermella per veure fins on arribava el cau del conill. I també gràcies a ell vaig acabar treballant a l’ICO. La Universitat necessita pioners com ell. En segon lloc, vull agrair al Víctor Moreno la inestimable oportuni- tat que em va donar al permetre’m treballar en el seu grup a l’Institut Català d’Oncologia, confiant en un informàtic que no havia sentit mai les paraules microarray o les sigles PCR. D’allò fa més d’onze anys. Junts vam desentortolligar el complex camí de l’anàlisi d’arrays, experiència ix gratificant a estones i desesperant moltes altres. Inevitablement, en onze anys també hem viscut travessies pel desert, però al seu costat he pogut aprendre infinitat de coses. És una persona que sorprèn perquè pots parlar amb ell de qualsevol tema i sempre té alguna cosa interessant a aportar. Gràcies per ser un "jefe" tan poc "jefe", per deixar-me fer i desfer segons el meu criteri i per tot el teu suport i confiança. Aquesta tesi de cap manera existiria sense el Miguel Ángel Pujana. Ell em va rescatar en una d’aquestes "travessies pel desert" meves, fet que no li podré agrair mai prou. Ell em va introduir en el món de la biologia molecular del càncer, la Systems Biology, les xarxes i els factors de transcripció, món que ja no he abandonat. Infinites gràcies també per obrir-me les portes del Califano Lab a la Universitat de Columbia, i gràcies per ensenyar-me a mirar els p-valors sempre des del cantó positiu! ;-) Al Gabriel Capellá (Gabi) i al Miguel Ángel Peinado (MAP) els vull agrair la seva col·laboració i el seu suport en tot moment durant els meus primers anys d’estada a l’ICO. Gràcies a tots dos en especial per escoltar-me cada cop que us anava a veure per dir-vos "necessito un tema de tesi"! La Mònica Grau (jefa!) va ser companya d’aventures i desventures en els meus primers anys a l’ICO. Amb ella vaig veure el que era la vocació i el sacrifici per la ciència. Llàstima que determinades circumstàncies la duguessin a canviar de camp. Estic convençut que es va perdre una bona investigadora, però alhora es va guanyar una gran cooperant! ;-) Gràcies per la teva paciència infinita a l’hora de fer-te entendre per un informàtic i explicar-me què era una sonda, un clon, un primer, la RAP-PCR... tantes coses! Per motius personals ara ens veiem poquet, però l’amistat que ens uneix estic convençut que no desapareixerà mai. Molta sort en les teves aventures, saps que sempre estaré a tir de Skype! Recordo el dia que em van dir que una noia mallorquina començava la tesi al laboratori, es deia Antònia Obrador (Antu!). Quan la vaig sentir parlar per primera vegada em va fer molta gràcia el seu accent illenc, i això va ser un fet que es va mantenir amb el temps, sempre que xerrava amb ella aprenia expressions mallorquines noves! ;-) L’Antònia ha estat per mi un exemple de perseverància i de lluita per fer les coses ben fetes quan sovint l’entorn ho posava difícil. De vegades diuen que en les situacions adverses saps qui és un amic de veritat, i l’Antònia sempre va ser allà quan la necessitava. Antu saps que sempre tindràs un amic a Barcelona, o allà on jo pari. Et desitjo el millor perquè t’ho mereixes! x Al Juan Ramón (JR) González li agraeixo la seva amistat i el seu bon humor al llarg dels anys que vam compartir a l’ICO. Els dinars amb ell eren els millors! A l’Elisenda Vendrell li agraeixo també la paciència que va tenir amb mi en les etapes en què moltes de les paraules del lab encara em sonaven a xinès, gràcies! A la Gemma Tarafa li vull agrair que m’ensenyés que els resultats obtinguts a la recerca depenen en gran part de la persona que la duu a terme. Al compis de dinar (David, Esther, Ferran, Sareta).
Recommended publications
  • Targeting PH Domain Proteins for Cancer Therapy
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2018 Targeting PH domain proteins for cancer therapy Zhi Tan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Medicinal Chemistry and Pharmaceutics Commons, Neoplasms Commons, and the Pharmacology Commons Recommended Citation Tan, Zhi, "Targeting PH domain proteins for cancer therapy" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 910. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/910 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TARGETING PH DOMAIN PROTEINS FOR CANCER THERAPY by Zhi Tan Approval page APPROVED: _____________________________________________ Advisory Professor, Shuxing Zhang, Ph.D. _____________________________________________
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Molecular and Genetic
    UNIVERSITY OF CALIFORNIA Los Angeles Molecular and Genetic Study of Human Liposarcoma A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Medical Pharmacology by Kathleen Barzan Smith 2012 ABSTRACT OF THE DISSERTATION Molecular and Genetic Study of Human Liposarcoma by Kathleen Barzan Smith Doctor of Philosophy in Molecular and Medical Pharmacology University of California, Los Angeles, 2012 Professor Frederick C. Eilber, Co-chair Professor Hong Wu, Co-chair Sarcomas are cancers of connective tissue, such as bone, nerves, and muscle. Liposarcoma, a neoplasm arising within adipose tissue, is the most common soft tissue sarcoma. Although most commonly found in the retroperitoneum or thighs, liposarcomas can arise throughout the body and are often large when found. Current treatment is limited to surgery and radiation, with chemotherapy doing little to improve prognosis in advanced cases. D ue to the large size of tumors and t heir proximity to organs and healthy tissue, complete surgical removal is difficult and recurrence rates remain high. Liposarcoma can be divided into three histological subtypes: pleomorphic, myxoid/round cell, and /well- dedifferentiated. Here we demonstrate the generation of three novel dedifferentiated liposarcoma xenograft models from freshly resected patient tissue. These xenograft models and their derived cultured cells successfully recapitulate the morphological and gene expression profiles of their patient tumors throughout serial passage in mice. Interestingly, the patients whose tumors could engraft and be serially passaged had significantly shorter survival than patients whose tumors did not engraft. These ii tumors carried gene expression signatures with more aggressive and less differentiated features.
    [Show full text]
  • Supplementary Table 1. Mutated Genes That Contain Protein Domains Identified Through Mutation Enrichment Analysis
    Supplementary Table 1. Mutated genes that contain protein domains identified through mutation enrichment analysis A. Breast cancers InterPro ID Mutated genes (number of mutations) IPR000219 ARHGEF4(2), ECT2(1), FARP1(1), FLJ20184(1), MCF2L2(1), NET1(1), OBSCN(5), RASGRF2(2), TRAD(1), VAV3(1) IPR000225 APC2(2), JUP(1), KPNA5(2), SPAG6(1) IPR000357 ARFGEF2(2), CMYA4(1), DRIM(2), JUP(1), KPNA5(2), PIK3R4(1), SPAG6(1) IPR000533 AKAP9(2), C10orf39(1), C20orf23(1), CUTL1(1), HOOK1(1), HOOK3(1), KTN1(2), LRRFIP1(3), MYH1(3), MYH9(2), NEF3(1), NF2(1), RSN(1), TAX1BP1(1), TPM4(1) IPR000694 ADAM12(3), ADAMTS19(1), APC2(2), APXL(1), ARID1B(1), BAT2(2), BAT3(1), BCAR1(1), BCL11A(2), BCORL1(1), C14orf155(3), C1orf2(1), C1QB(1), C6orf31(1), C7orf11(1), CD2(1), CENTD3(3), CHD5(3), CIC(3), CMYA1(2), COL11A1(3), COL19A1(2), COL7A1(3), DAZAP1(1), DBN1(3), DVL3(1), EIF5(1), FAM44A(1), FAM47B(1), FHOD1(1), FLJ20584(1), G3BP2(2), GAB1(2), GGA3(1), GLI1(3), GPNMB(2), GRIN2D(3), HCN3(1), HOXA3(2), HOXA4(1), IRS4(1), KCNA5(1), KCNC2(1), LIP8(1), LOC374955(1), MAGEE1(2), MICAL1(2), MICAL‐L1(1), MLLT2(1), MMP15(1), N4BP2(1), NCOA6(2), NHS(1), NUP214(3), ODZ1(3), PER1(2), PER2(1), PHC1(1), PLXNB1(1), PPM1E(2), RAI17(2), RAPH1(2), RBAF600(2), SCARF2(1), SEMA4G(1), SLC16A2(1), SORBS1(1), SPEN(2), SPG4(1), TBX1(1), TCF1(2), TCF7L1(1), TESK1(1), THG‐1(1), TP53(18), TRIF(1), ZBTB3(2), ZNF318(2) IPR000909 CENTB1(2), PLCB1(1), PLCG1(1) IPR000998 AEGP(3), EGFL6(2), PRSS7(1) IPR001140 ABCB10(2), ABCB6(1), ABCB8(2) IPR001164 ARFGAP3(1), CENTB1(2), CENTD3(3), CENTG1(2) IPR001589
    [Show full text]
  • Identification of the Rac Gtpase Activating Protein Rho GAP 22 As a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility
    Identification of the Rac GTPase Activating Protein Rho GAP 22 as a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility Alexander Francis Rowland Submitted for the degree of Doctor of Philosophy Garvan Institute of Medical Research & Faculty of Medicine University of New South Wales ABSTRACT Insulin exerts many of its metabolic actions via the canonical PI3K/Akt pathway leading to phosphorylation and 14-3-3 binding of key metabolic targets. Recognising this, the goal of my thesis was to identify novel actions of insulin. To accomplish this I have conducted a screen to identify insulin-responsive 14-3-3 binding phosphoproteins and in so doing have identified a GTPase Activating Protein (GAP) for Rac1 called Rho GAP 22. Insulin increased 14-3-3 binding to Rho GAP 22 by 4 fold and this effect was PI3Kinase and Akt dependent. Using semi-quantitative mass spectrometry we identified two putative 14-3-3 binding sites (Ser16 and Ser397) within Rho GAP 22 and insulin increased phosphorylation at both of these sites. Mutagenesis studies revealed a complex interplay in phosphorylation at these two sites. Mutating Ser16 to Ala almost completely abolished 14-3-3 binding to Rho GAP 22 in vivo but not in vitro. Phosphorylation of Ser16 both in vitro and in vivo was Akt-dependent and inhibition of Akt prevented 14-3-3 binding to Ser16 in vitro. A truncated Rho GAP 22 protein lacking the N-terminal PH domain and Ser16 interacted with 14-3-3 in vivo and this interaction was Akt dependent. The Ser397 site in Rho GAP 22 is located close to the GAP domain and so it is likely that phosphorylation at this site regulates GAP activity.
    [Show full text]
  • Supplementary Material (ESI) for Molecular Biosystems This Journal Is © the Royal Society of Chemistry 2013
    Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 Supplementary material for Network Analysis of Genomic Alteration Profiles Reveals Co-altered Functional Modules and Driver Genes in Glioblastoma Yunyan Gu1*, Hongwei Wang1, Yao Qin1, Yujing Zhang1, Wenyuan Zhao1, Lishuang Qi1, Yuannv Zhang1, Chenguang Wang1, Zheng Guo1,2* 1 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China 2 Bioinformatics Center, Fujian Medical University, Fuzhou, 350004, China * Corresponding author Email: [email protected] or [email protected] Phone: (86 451) 8661-5933 Fax: (86 451) 8666-9617 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 Table of Contents A. Supplementary Methods (pg 3-4) B. Supplementary Figures (pg 5-11) C. Supplementary Tables (pg 12-19) 2 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 A. Supplementary Methods The pseudo codes for searching co-altered module pair Input: (1) G(V, E), where G is the connected sub-network, V is the set of genes and E is the set of edges in the network; (2) Alteration profiles; Output: R=(M1, M2, …, MN), N module pairs, Mi(G1, G2), i=1…N, will to be discovered and returned. N is also the number of all seed pairs. S is the co-alteration score of the module pair. 1: R=φ. S= 0. N’=1. 2: M(G1, G2) is the module pair that we will discover. 3: repeat 4: Taking each pair of altered genes as a seed pair, also a module pair M(G1, G2), G1={i}, G2={j}.
    [Show full text]
  • The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D
    The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D. Wood,1* D. Williams Parsons,1* Jimmy Lin,1 Thomas Barber,1 Diana Mandelker,1 Rebecca J. Leary,1 Janine Ptak,1 Natalie Silliman,1 Steve Szabo,1 Phillip Buckhaults,2 Christopher Farrell,2 Paul Meeh,2 Sanford D. Markowitz,3 Joseph Willis,4 Dawn Dawson,4 James K. V. Willson,5 Adi F. Gazdar,6 James Hartigan,7 Leo Wu,8 Changsheng Liu,8 Giovanni Parmigiani,9 Ben Ho Park,10 Kurtis E. Bachman,11 Nickolas Papadopoulos,1 Bert Vogelstein,1† Kenneth W. Kinzler,1† Victor E. Velculescu1† 1Ludwig Center and Howard Hughes Medical Institute, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA. 2Department of Pathology and Microbiology, Center for Colon Cancer Research, and South Carolina Cancer Center, Division of Basic Research, University of South Carolina School of Medicine, Columbia, SC 29229, USA. 3Department of Medicine, Ireland Cancer Center, and Howard Hughes Medical Institute, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 4Department of Pathology and Ireland Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 5Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 6Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 7Agencourt Bioscience Corporation, Beverly, MA 01915, USA. 8SoftGenetics LLC, State College, PA 16803, USA. 9Departments of Oncology, Biostatistics, and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
    [Show full text]
  • ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom Et Al
    USO10787712B2 ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom et al . ( 45 ) Date of Patent : * Sep . 29 , 2020 ( 54 ) CONSENSUS CODING SEQUENCES OF ( 56 ) References Cited HUMAN BREAST AND COLORECTAL CANCERS U.S. PATENT DOCUMENTS 5,605,799 A 2/1997 White et al . ( 71 ) Applicant: The Johns Hopkins University , 8,741,573 B2 * 6/2014 Sjoblom C12Q 1/6886 Baltimore , MD (US ) 435 / 6.14 2001/0021502 Al 9/2001 Swift et al . ( 72 ) Inventors: Tobias Sjoblom , Uppsala ( SE ) ; Sian 2007/0017666 Al 1/2007 Song Jones , Baltimore , MD (US ); D. 2010/0316995 Al 12/2010 Sjoblom et al . Williams Parsons , Bellaire, TX ( US ) ; FOREIGN PATENT DOCUMENTS Laura D. Wood , Baltimore, MD ( US ) ; Jimmy Cheng - Ho Lin , Baltimore , MD EP 785216 7/1997 EP 2543739 1/2013 ( US ) ; Thomas Barber , Nobelsville , TN WO WO 199213103 8/1992 ( US ) ; Diana Mandelker , Baltimore , WO WO 200042436 7/2000 MD ( US ) ; Bert Vogelstein , Baltimore , WO WO 2001042504 6/2001 MD ( US ) ; Kenneth W. Kinzler , WO WO 2004082458 9/2004 Baltimore , MD (US ); Victor E. WO WO 2005113824 12/2005 Velculescu, Dayton , MD ( US ) WO WO 2014110408 7/2014 ( 73 ) Assignee : The Johns Hopkins University , OTHER PUBLICATIONS Baltimore , MD (US ) Allen et al . , “ + A2 : D33The role of molecular markers in the adjuvant Subject to any disclaimer , the term of this treatment of colorectal cancer ,” European Journal of Cancer . Supple ( * ) Notice : ment, Pergamon , Oxfor, GB , vol . 3 , No. 3 , Oct. 1 , 2005 . patent is extended or adjusted under 35 Arai et al ., “ The inv ( 11 ) ( p15222) chromosome translocation of de U.S.C.
    [Show full text]
  • MGMT-Independent Temozolomide Resistance in Pediatric Glioblastoma Cells Associated with a PI3-Kinase–Mediated HOX/Stem Cell Gene Signature
    Published OnlineFirst October 8, 2010; DOI: 10.1158/0008-5472.CAN-10-1250 Published OnlineFirst on November 2, 2010 as 10.1158/0008-5472.CAN-10-1250 Therapeutics, Targets, and Chemical Biology Cancer Research MGMT-Independent Temozolomide Resistance in Pediatric Glioblastoma Cells Associated with a PI3-Kinase–Mediated HOX/Stem Cell Gene Signature Nathalie Gaspar1,2,3, Lynley Marshall1,2,4, Lara Perryman1, Dorine A. Bax1, Suzanne E. Little1, Marta Viana-Pereira1,5, Swee Y. Sharp2, Gilles Vassal4, Andrew D.J. Pearson1,3, Rui M. Reis5, Darren Hargrave3, Paul Workman2, and Chris Jones1 Abstract Sensitivity to temozolomide is restricted to a subset of glioblastoma patients, with the major determinant of resistance being a lack of promoter methylation of the gene encoding the repair protein DNA methyltransfer- ase MGMT, although other mechanisms are thought to be active. There are, however, limited preclinical data in model systems derived from pediatric glioma patients. We screened a series of cell lines for temozolomide efficacy in vitro, and investigated the differential mechanisms of resistance involved. In the majority of cell lines, a lack of MGMT promoter methylation and subsequent protein overexpression were linked to temozolomide resistance. An exception was the pediatric glioblastoma line KNS42. Expression profiling data revealed a coordinated upregulation of HOX gene expression in resistant lines, especially KNS42, which was reversed by phosphoinositide 3-kinase path- way inhibition. High levels of HOXA9/HOXA10 gene expression were associated with a shorter survival in pediatric high-grade glioma patient samples. Combination treatment in vitro of pathway inhibition and temozolomide re- sulted in a highly synergistic interaction in KNS42 cells.
    [Show full text]
  • Genomic and Epigenomic Profile of Uterine Smooth Muscle
    International Journal of Molecular Sciences Article Genomic and Epigenomic Profile of Uterine Smooth Muscle Tumors of Uncertain Malignant Potential (STUMPs) Revealed Similarities and Differences with Leiomyomas and Leiomyosarcomas Donatella Conconi 1,*,† , Serena Redaelli 1,† , Andrea Alberto Lissoni 1,2, Chiara Cilibrasi 3, Patrizia Perego 4, Eugenio Gautiero 5, Elena Sala 5, Mariachiara Paderno 1,2, Leda Dalprà 1, Fabio Landoni 1,2, Marialuisa Lavitrano 1 , Gaia Roversi 1,5 and Angela Bentivegna 1,* 1 School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; [email protected] (S.R.); [email protected] (A.A.L.); [email protected] (M.P.); [email protected] (L.D.); [email protected] (F.L.); [email protected] (M.L.); [email protected] (G.R.) 2 Clinic of Obstetrics and Gynecology, San Gerardo Hospital, 20900 Monza, Italy 3 Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK; [email protected] 4 Division of Pathology, San Gerardo Hospital, 20900 Monza, Italy; [email protected] 5 Medical Genetics Laboratory, San Gerardo Hospital, 20900 Monza, Italy; [email protected] (E.G.); [email protected] (E.S.) Citation: Conconi, D.; Redaelli, S.; * Correspondence: [email protected] (D.C.); [email protected] (A.B.); Lissoni, A.A.; Cilibrasi, C.; Perego, P.; Tel.: +39-0264488133 (A.B.) Gautiero, E.; Sala, E.; Paderno, M.; † Co-first authorship. Dalprà, L.; Landoni, F.; et al. Genomic and Epigenomic Profile of Uterine Abstract: Uterine smooth muscle tumors of uncertain malignant potential (STUMPs) represent a Smooth Muscle Tumors of Uncertain heterogeneous group of tumors that cannot be histologically diagnosed as unequivocally benign Malignant Potential (STUMPs) or malignant.
    [Show full text]
  • Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements
    Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements Jan B. Egan1, Michael T. Barrett2, Mia D. Champion3,4, Sumit Middha5, Elizabeth Lenkiewicz2, Lisa Evers2, Princy Francis 6 Jessica Schmidt 6 Chang-Xin , Shi 6 , Scott Van Wier, 6 Sandra, Badar 6 , Gregory Ahmann 6 K., Martin Kortuem 7 , Nicole J. Boczek8 , Rafael Fonseca 1 , 9, David W. Craig10, John D. Carpten11, Mitesh J. Borad1,9, A. Keith Stewart1,9* 1 Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, United States of America, 2 Clinical Translational Research Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America, 3 Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America, 4 Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America, 5 Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America, 6 Research, Mayo Clinic, Scottsdale, Arizona, United States of America, 7 Hematology, Mayo Clinic, Scottsdale, Arizona, United States of America, 8 Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, United States of America, 9 Division of Hematology/Oncology Mayo Clinic, Scottsdale, Arizona, United States of America, 10 Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America, 11 Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America Abstract Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing.
    [Show full text]
  • Open Full Page
    Human Cancer Biology FGFR1 Emerges as a Potential TherapeuticTarget for Lobular Breast Carcinomas Jorge Sergio Reis-Filho,1, 2 Pete T. Simpson,3 Nicholas C.Turner,1Maryou Ballo Lambros,1 Chris Jones,4 Alan Mackay,1 Anita Grigoriadis,1 David Sarrio,6 Kay Savage,1 Tim Dexter,1 Marjan Iravani,1Kerry Fenwick,1BarbaraWeber,5 David Hardisson,7 Fernando Carlos Schmitt,2 Jose Palacios,6 SunilR.Lakhani,3 and Alan Ashworth1 Abstract Purpose: Classic lobular carcinomas (CLC) account for 10% to 15% of all breast cancers. At the genetic level, CLCs show recurrent physical loss of chromosome16q coupled with the lack of E-cadherin (CDH1 gene) expression. However, little is known about the putative therapeutic targets for these tumors.The aim of this study was to characterize CLCs at the molecular genetic level and identify putative therapeutic targets. Experimental Design: We subjected 13 cases of CLC to a comprehensive molecular analysis including immunohistochemistry for E-cadherin, estrogen and progesterone receptors, HER2/ neu and p53; high-resolution comparative genomic hybridization (HR-CGH); microarray-based CGH (aCGH); and fluorescent and chromogenic in situ hybridization for CCND1 and FGFR1. Results: All cases lacked the expression of E-cadherin, p53, and HER2, and all but one case was positive for estrogen receptors. HR-CGH revealed recurrent gains on 1qand losses on 16q (both, 85%). aCGH showed a good agreement with but higher resolution and sensitivity than HR-CGH. Recurrent, high level gains at 11q13 (CCND1) and 8p12-p11.2 were identified in seven and six cases, respectively, and were validated with in situ hybridization. Examination of aCGH and the gene expression profile data of the cell lines, MDA-MB-134 and ZR-75-1, which harbor distinct gains of 8p12-p11.2, identified FGFR1 as a putative amplicon driver of 8p12-p11.2 amplification in MDA-MB-134.
    [Show full text]
  • Autosomal Dominant Axonal Charcot
    193 LETTER TO JMG J Med Genet: first published as 10.1136/jmg.2003.012633 on 1 March 2004. Downloaded from Autosomal dominant axonal Charcot-Marie-Tooth disease type 2 (CMT2G) maps to chromosome 12q12–q13.3 E Nelis, J Berciano, N Verpoorten, K Coen, I Dierick, V Van Gerwen, O Combarros, P De Jonghe, V Timmerman ............................................................................................................................... J Med Genet 2004;41:193–197. doi: 10.1136/jmg.2003.012633 harcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of disorders that Key points Cinvolve the peripheral nervous system.1 It is charac- terised by progressive distal neurogenic muscular atrophy N Charcot-Marie-Tooth (CMT) neuropathies are hetero- and weakness that initially affects the peroneal muscles and geneous clinically and genetically. For the auto- later the hands. Charcot-Marie-Tooth disease type 1 (CMT1), somal dominant axonal type of CMT or CMT type 2 also called hereditary motor and sensory neuropathy type I (CMT2), six loci and four genes have been reported. (HMSN I), is a dominantly inherited demyelinating neuro- N A genomewide scan was performed in a Spanish pathy characterised by reduced nerve conduction velocities family with autosomal dominant CMT2 not linked to the (NCV) (motor median NCV ,38 m/s). Charcot-Marie-Tooth known CMT2 loci and conclusive linkage with a disease type 2 (CMT) 2, or HMSN II, is a dominantly chromosome 12q13.13 marker was obtained. Fine inherited axonal neuropathy characterised by normal or mapping localised this novel CMT2 locus to a 13.2 Mb slightly reduced NCV. Both autosomal dominant CMT1 and autosomal dominant CMT2 are genetically heterogeneous, (12.8 cM) interval between D12S1663 and with five and six loci, respectively.2 Most patients with CMT1 D12S1644 at 12q12–q13.3.
    [Show full text]