Identification of the Rac Gtpase Activating Protein Rho GAP 22 As a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility

Total Page:16

File Type:pdf, Size:1020Kb

Identification of the Rac Gtpase Activating Protein Rho GAP 22 As a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility Identification of the Rac GTPase Activating Protein Rho GAP 22 as a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility Alexander Francis Rowland Submitted for the degree of Doctor of Philosophy Garvan Institute of Medical Research & Faculty of Medicine University of New South Wales ABSTRACT Insulin exerts many of its metabolic actions via the canonical PI3K/Akt pathway leading to phosphorylation and 14-3-3 binding of key metabolic targets. Recognising this, the goal of my thesis was to identify novel actions of insulin. To accomplish this I have conducted a screen to identify insulin-responsive 14-3-3 binding phosphoproteins and in so doing have identified a GTPase Activating Protein (GAP) for Rac1 called Rho GAP 22. Insulin increased 14-3-3 binding to Rho GAP 22 by 4 fold and this effect was PI3Kinase and Akt dependent. Using semi-quantitative mass spectrometry we identified two putative 14-3-3 binding sites (Ser16 and Ser397) within Rho GAP 22 and insulin increased phosphorylation at both of these sites. Mutagenesis studies revealed a complex interplay in phosphorylation at these two sites. Mutating Ser16 to Ala almost completely abolished 14-3-3 binding to Rho GAP 22 in vivo but not in vitro. Phosphorylation of Ser16 both in vitro and in vivo was Akt-dependent and inhibition of Akt prevented 14-3-3 binding to Ser16 in vitro. A truncated Rho GAP 22 protein lacking the N-terminal PH domain and Ser16 interacted with 14-3-3 in vivo and this interaction was Akt dependent. The Ser397 site in Rho GAP 22 is located close to the GAP domain and so it is likely that phosphorylation at this site regulates GAP activity. Hence, this may serve as a novel mechanism by which Akt regulates Rac1 GTP Loading and activity. I found that over-expression of a mutant Rho GAP 22, which is unable to bind 14-3-3, reduced cell motility in NIH 3T3 cells. This defect was not observed in cells overexpressing mutant Rho GAP 22 which is unable to bind 14-3-3 and is catalytically inactive. Thus, I propose that insulin and possibly other growth factors may play a novel role in regulating cell migration and motility via the Akt-dependent phosphorylation of Rho GAP 22 leading to modulation of Rac1 activity. ii TABLE OF CONTENTS ABSTRACT ............................................................................................................................... ii TABLE OF CONTENTS ........................................................................................................... iii ACKNOWLEDGEMENTS ....................................................................................................... vi CONFERENCE PRESENTATIONS ....................................................................................... vii LIST OF FIGURES ................................................................................................................. viii LIST OF TABLES ..................................................................................................................... ix LIST OF ABBREVIATIONS ..................................................................................................... x CHAPTER 1 General Introduction .................................................................................. 1 Insulin and Glucose Homeostasis. ........................................................................................................... 1 The Insulin Signalling Pathway ............................................................................................................... 1 The Protein Kinase Akt ............................................................................................................................ 4 The Regulation of Akt. ........................................................................................................................ 8 Activation of Akt ............................................................................................................................ 9 Negative Regulators of Akt ........................................................................................................... 14 Akt is a Major Regulator of Cellular Metabolism ................................................................................. 15 Glucose Uptake ................................................................................................................................. 16 Glucose Disposal ............................................................................................................................... 17 Protein Synthesis ............................................................................................................................... 18 Other Functions of Akt ...................................................................................................................... 19 Akt in Cell Growth and Survival. .................................................................................................. 19 Akt and the Regulation of Cell Proliferation ................................................................................. 19 Akt and the Regulation of Cardiac Function ................................................................................. 20 Akt and Cell Migration ................................................................................................................. 21 The Akt phosphorylation motif ......................................................................................................... 22 Akt Signals Through 14-3-3 .............................................................................................................. 23 14-3-3 Biology ....................................................................................................................................... 23 History of 14-3-3 ............................................................................................................................... 24 The 14-3-3 Protein Family ................................................................................................................ 25 Structure of 14-3-3 ............................................................................................................................ 26 Regulation of 14-3-3 ......................................................................................................................... 30 Functions of 14-3-3 ........................................................................................................................... 31 The “14-3-3 Interactome” .................................................................................................................. 34 Using 14-3-3 as a Tool. ..................................................................................................................... 35 Aims. ...................................................................................................................................................... 36 CHAPTER 2 Materials and Methods. ............................................................................ 37 Materials ................................................................................................................................................ 37 Plasmids and Constructs .................................................................................................................... 38 Cell Lines .......................................................................................................................................... 38 Methods ................................................................................................................................................. 39 Cell Culture ....................................................................................................................................... 39 Production of Retrovirus Using Plat-E cells ...................................................................................... 39 Retroviral Infection of NIH3T3 Fibroblasts and Generation of Stable Cell Lines ............................ 39 Transient Transfection of CHO IR/IRS-1 Cells Using Lipofectamine LTX ..................................... 40 SILAC Labelling of L6 Cells ............................................................................................................ 40 Production of GST Fusion Proteins ................................................................................................... 41 Production of 6xHis Fusion Proteins ................................................................................................. 42 Coupling GST or 6xHis Fusion Proteins to CNBR Sepharose .......................................................... 42 Production of Rho GAP 22 Antibody ................................................................................................ 42 Production of the pSer22 and pSer397 Rho GAP 22 Antibodies .......................................................... 43 iii 14-3-3 Pulldown from L6 Myotubes or Mouse Quadriceps or MEF cells ........................................ 43 Immunoprecipitation (non FLAG) .................................................................................................... 44 Immunoprecipitation Using FLAG Antibody ................................................................................... 45 Western Blotting and SDS-PAGE ..................................................................................................... 45 Peptide Competition Assays .............................................................................................................
Recommended publications
  • Targeting PH Domain Proteins for Cancer Therapy
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2018 Targeting PH domain proteins for cancer therapy Zhi Tan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Medicinal Chemistry and Pharmaceutics Commons, Neoplasms Commons, and the Pharmacology Commons Recommended Citation Tan, Zhi, "Targeting PH domain proteins for cancer therapy" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 910. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/910 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TARGETING PH DOMAIN PROTEINS FOR CANCER THERAPY by Zhi Tan Approval page APPROVED: _____________________________________________ Advisory Professor, Shuxing Zhang, Ph.D. _____________________________________________
    [Show full text]
  • Rare Copy Number Variants Disrupt Genes Regulating Vascular Smooth Muscle Cell Adhesion and Contractility in Sporadic Thoracic Aortic Aneurysms and Dissections
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Rare Copy Number Variants Disrupt Genes Regulating Vascular Smooth Muscle Cell Adhesion and Contractility in Sporadic Thoracic Aortic Aneurysms and Dissections Siddharth K. Prakash,1 Scott A. LeMaire,2,3 Dong-Chuan Guo,4 Ludivine Russell,2 Ellen S. Regalado,4 Hossein Golabbakhsh,4 Ralph J. Johnson,4 Hazim J. Safi,5 Anthony L. Estrera,5 Joseph S. Coselli,2,3 Molly S. Bray,1 Suzanne M. Leal,1 Dianna M. Milewicz,4 and John W. Belmont1,* Thoracic aortic aneurysms and dissections (TAAD) cause significant morbidity and mortality, but the genetic origins of TAAD remain largely unknown. In a genome-wide analysis of 418 sporadic TAAD cases, we identified 47 copy number variant (CNV) regions that were enriched in or unique to TAAD patients compared to population controls. Gene ontology, expression profiling, and network anal- ysis showed that genes within TAAD CNVs regulate smooth muscle cell adhesion or contractility and interact with the smooth muscle- specific isoforms of a-actin and b-myosin, which are known to cause familial TAAD when altered. Enrichment of these gene functions in rare CNVs was replicated in independent cohorts with sporadic TAAD (STAAD, n ¼ 387) and inherited TAAD (FTAAD, n ¼ 88). The over- all prevalence of rare CNVs (23%) was significantly increased in FTAAD compared with STAAD patients (Fisher’s exact test, p ¼ 0.03). Our findings suggest that rare CNVs disrupting smooth muscle adhesion or contraction contribute to both sporadic and familial disease.
    [Show full text]
  • Genes Involved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase- Immortalized Human Urothelial Cells
    Genes Involved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase- Immortalized Human Urothelial Cells Emma J. Chapman,1 Gavin Kelly,2 and Margaret A. Knowles1 1Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom and 2Bioinformatics and Biostatistics Service, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom Abstract non–telomere effects of telomerase and provides further The expression of hTERT, the catalytic subunit of rationale for the use of telomerase inhibitors in UC. telomerase, immortalizes normal human urothelial cells (Mol Cancer Res 2008;6(7):1154–68) (NHUC). Expression of a modified hTERT, without the ability to act in telomere maintenance, did not Introduction immortalize NHUC, confirming that effects at telomeres The primary and well-documented role of telomerase is as are required for urothelial immortalization. Previous a reverse transcriptase that acts in the maintenance of studies indicate that inhibition of telomerase has an telomere length and structure. Up-regulation of telomerase immediate effect on urothelial carcinoma (UC) cell line expression occurs in the majority of urothelial carcinoma viability, before sufficient divisions to account for (UC) irrespective or stage or grade (1), suggesting that this telomere attrition, implicating non–telomere effects may be an early event in tumorigenesis. Normal human of telomerase in UC. We analyzed the effects of urothelial cells (NHUC) are immortalized by expression of telomerase on gene expression in isogenic mortal and hTERT, the catalytic subunit of telomerase. In contrast to hTERT-transduced NHUC. hTERT expression led to requirements for immortalization in other epithelial cell types consistent alterations in the expression of genes and despite the common loss of expression of p16 in UC, predicted to be of phenotypic significance in inactivation of the CDKN2A locus (encoding p16 and tumorigenesis.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Molecular and Genetic
    UNIVERSITY OF CALIFORNIA Los Angeles Molecular and Genetic Study of Human Liposarcoma A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Medical Pharmacology by Kathleen Barzan Smith 2012 ABSTRACT OF THE DISSERTATION Molecular and Genetic Study of Human Liposarcoma by Kathleen Barzan Smith Doctor of Philosophy in Molecular and Medical Pharmacology University of California, Los Angeles, 2012 Professor Frederick C. Eilber, Co-chair Professor Hong Wu, Co-chair Sarcomas are cancers of connective tissue, such as bone, nerves, and muscle. Liposarcoma, a neoplasm arising within adipose tissue, is the most common soft tissue sarcoma. Although most commonly found in the retroperitoneum or thighs, liposarcomas can arise throughout the body and are often large when found. Current treatment is limited to surgery and radiation, with chemotherapy doing little to improve prognosis in advanced cases. D ue to the large size of tumors and t heir proximity to organs and healthy tissue, complete surgical removal is difficult and recurrence rates remain high. Liposarcoma can be divided into three histological subtypes: pleomorphic, myxoid/round cell, and /well- dedifferentiated. Here we demonstrate the generation of three novel dedifferentiated liposarcoma xenograft models from freshly resected patient tissue. These xenograft models and their derived cultured cells successfully recapitulate the morphological and gene expression profiles of their patient tumors throughout serial passage in mice. Interestingly, the patients whose tumors could engraft and be serially passaged had significantly shorter survival than patients whose tumors did not engraft. These ii tumors carried gene expression signatures with more aggressive and less differentiated features.
    [Show full text]
  • Supplementary Table 1. Mutated Genes That Contain Protein Domains Identified Through Mutation Enrichment Analysis
    Supplementary Table 1. Mutated genes that contain protein domains identified through mutation enrichment analysis A. Breast cancers InterPro ID Mutated genes (number of mutations) IPR000219 ARHGEF4(2), ECT2(1), FARP1(1), FLJ20184(1), MCF2L2(1), NET1(1), OBSCN(5), RASGRF2(2), TRAD(1), VAV3(1) IPR000225 APC2(2), JUP(1), KPNA5(2), SPAG6(1) IPR000357 ARFGEF2(2), CMYA4(1), DRIM(2), JUP(1), KPNA5(2), PIK3R4(1), SPAG6(1) IPR000533 AKAP9(2), C10orf39(1), C20orf23(1), CUTL1(1), HOOK1(1), HOOK3(1), KTN1(2), LRRFIP1(3), MYH1(3), MYH9(2), NEF3(1), NF2(1), RSN(1), TAX1BP1(1), TPM4(1) IPR000694 ADAM12(3), ADAMTS19(1), APC2(2), APXL(1), ARID1B(1), BAT2(2), BAT3(1), BCAR1(1), BCL11A(2), BCORL1(1), C14orf155(3), C1orf2(1), C1QB(1), C6orf31(1), C7orf11(1), CD2(1), CENTD3(3), CHD5(3), CIC(3), CMYA1(2), COL11A1(3), COL19A1(2), COL7A1(3), DAZAP1(1), DBN1(3), DVL3(1), EIF5(1), FAM44A(1), FAM47B(1), FHOD1(1), FLJ20584(1), G3BP2(2), GAB1(2), GGA3(1), GLI1(3), GPNMB(2), GRIN2D(3), HCN3(1), HOXA3(2), HOXA4(1), IRS4(1), KCNA5(1), KCNC2(1), LIP8(1), LOC374955(1), MAGEE1(2), MICAL1(2), MICAL‐L1(1), MLLT2(1), MMP15(1), N4BP2(1), NCOA6(2), NHS(1), NUP214(3), ODZ1(3), PER1(2), PER2(1), PHC1(1), PLXNB1(1), PPM1E(2), RAI17(2), RAPH1(2), RBAF600(2), SCARF2(1), SEMA4G(1), SLC16A2(1), SORBS1(1), SPEN(2), SPG4(1), TBX1(1), TCF1(2), TCF7L1(1), TESK1(1), THG‐1(1), TP53(18), TRIF(1), ZBTB3(2), ZNF318(2) IPR000909 CENTB1(2), PLCB1(1), PLCG1(1) IPR000998 AEGP(3), EGFL6(2), PRSS7(1) IPR001140 ABCB10(2), ABCB6(1), ABCB8(2) IPR001164 ARFGAP3(1), CENTB1(2), CENTD3(3), CENTG1(2) IPR001589
    [Show full text]
  • Supplementary Material (ESI) for Molecular Biosystems This Journal Is © the Royal Society of Chemistry 2013
    Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 Supplementary material for Network Analysis of Genomic Alteration Profiles Reveals Co-altered Functional Modules and Driver Genes in Glioblastoma Yunyan Gu1*, Hongwei Wang1, Yao Qin1, Yujing Zhang1, Wenyuan Zhao1, Lishuang Qi1, Yuannv Zhang1, Chenguang Wang1, Zheng Guo1,2* 1 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China 2 Bioinformatics Center, Fujian Medical University, Fuzhou, 350004, China * Corresponding author Email: [email protected] or [email protected] Phone: (86 451) 8661-5933 Fax: (86 451) 8666-9617 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 Table of Contents A. Supplementary Methods (pg 3-4) B. Supplementary Figures (pg 5-11) C. Supplementary Tables (pg 12-19) 2 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 A. Supplementary Methods The pseudo codes for searching co-altered module pair Input: (1) G(V, E), where G is the connected sub-network, V is the set of genes and E is the set of edges in the network; (2) Alteration profiles; Output: R=(M1, M2, …, MN), N module pairs, Mi(G1, G2), i=1…N, will to be discovered and returned. N is also the number of all seed pairs. S is the co-alteration score of the module pair. 1: R=φ. S= 0. N’=1. 2: M(G1, G2) is the module pair that we will discover. 3: repeat 4: Taking each pair of altered genes as a seed pair, also a module pair M(G1, G2), G1={i}, G2={j}.
    [Show full text]
  • The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D
    The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D. Wood,1* D. Williams Parsons,1* Jimmy Lin,1 Thomas Barber,1 Diana Mandelker,1 Rebecca J. Leary,1 Janine Ptak,1 Natalie Silliman,1 Steve Szabo,1 Phillip Buckhaults,2 Christopher Farrell,2 Paul Meeh,2 Sanford D. Markowitz,3 Joseph Willis,4 Dawn Dawson,4 James K. V. Willson,5 Adi F. Gazdar,6 James Hartigan,7 Leo Wu,8 Changsheng Liu,8 Giovanni Parmigiani,9 Ben Ho Park,10 Kurtis E. Bachman,11 Nickolas Papadopoulos,1 Bert Vogelstein,1† Kenneth W. Kinzler,1† Victor E. Velculescu1† 1Ludwig Center and Howard Hughes Medical Institute, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA. 2Department of Pathology and Microbiology, Center for Colon Cancer Research, and South Carolina Cancer Center, Division of Basic Research, University of South Carolina School of Medicine, Columbia, SC 29229, USA. 3Department of Medicine, Ireland Cancer Center, and Howard Hughes Medical Institute, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 4Department of Pathology and Ireland Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 5Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 6Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 7Agencourt Bioscience Corporation, Beverly, MA 01915, USA. 8SoftGenetics LLC, State College, PA 16803, USA. 9Departments of Oncology, Biostatistics, and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
    [Show full text]
  • Analysis of Differential Gene Expression in Colorectal Cancer and Stroma Using Fluorescence- Activated Cell Sorting Purification
    Analysis of differential gene expression in colorectal cancer and stroma using fluorescence- activated cell sorting purification The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Smith, M J, A C Culhane, M Donovan, J C Coffey, B D Barry, M A Kelly, D G Higgins, et al. 2009. “Analysis of Differential Gene Expression in Colorectal Cancer and Stroma Using Fluorescence- Activated Cell Sorting Purification.” British Journal of Cancer 100 (9) (May 5): 1452–1464. doi:10.1038/sj.bjc.6604931. Published Version doi:10.1038/sj.bjc.6604931 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28724495 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Genomics. Author manuscript; available in PMC 2009 June 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Genomics. 2008 June ; 91(6): 508±511. doi:10.1016/j.ygeno.2008.03.002. Functional Classification Analysis of Somatically Mutated Genes in Human Breast and Colorectal Cancers Thomas W. Chittenden*,1,2,3, Eleanor A. Howe*,1, Aedin C. Culhane1,2, Razvan Sultana1, Jennifer M. Taylor4, Chris Holmes3,5, and John Quackenbush1,2 1Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 2Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA 3Department of Statistics, University of Oxford, Oxford, UK 4Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK 5MRC Mammalian Genetics Unit, Harwell, UK.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom Et Al
    USO10787712B2 ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom et al . ( 45 ) Date of Patent : * Sep . 29 , 2020 ( 54 ) CONSENSUS CODING SEQUENCES OF ( 56 ) References Cited HUMAN BREAST AND COLORECTAL CANCERS U.S. PATENT DOCUMENTS 5,605,799 A 2/1997 White et al . ( 71 ) Applicant: The Johns Hopkins University , 8,741,573 B2 * 6/2014 Sjoblom C12Q 1/6886 Baltimore , MD (US ) 435 / 6.14 2001/0021502 Al 9/2001 Swift et al . ( 72 ) Inventors: Tobias Sjoblom , Uppsala ( SE ) ; Sian 2007/0017666 Al 1/2007 Song Jones , Baltimore , MD (US ); D. 2010/0316995 Al 12/2010 Sjoblom et al . Williams Parsons , Bellaire, TX ( US ) ; FOREIGN PATENT DOCUMENTS Laura D. Wood , Baltimore, MD ( US ) ; Jimmy Cheng - Ho Lin , Baltimore , MD EP 785216 7/1997 EP 2543739 1/2013 ( US ) ; Thomas Barber , Nobelsville , TN WO WO 199213103 8/1992 ( US ) ; Diana Mandelker , Baltimore , WO WO 200042436 7/2000 MD ( US ) ; Bert Vogelstein , Baltimore , WO WO 2001042504 6/2001 MD ( US ) ; Kenneth W. Kinzler , WO WO 2004082458 9/2004 Baltimore , MD (US ); Victor E. WO WO 2005113824 12/2005 Velculescu, Dayton , MD ( US ) WO WO 2014110408 7/2014 ( 73 ) Assignee : The Johns Hopkins University , OTHER PUBLICATIONS Baltimore , MD (US ) Allen et al . , “ + A2 : D33The role of molecular markers in the adjuvant Subject to any disclaimer , the term of this treatment of colorectal cancer ,” European Journal of Cancer . Supple ( * ) Notice : ment, Pergamon , Oxfor, GB , vol . 3 , No. 3 , Oct. 1 , 2005 . patent is extended or adjusted under 35 Arai et al ., “ The inv ( 11 ) ( p15222) chromosome translocation of de U.S.C.
    [Show full text]
  • Open Mithun Shah.Pdf
    The Pennsylvania State University The Graduate School Department of Molecular Medicine ROLE OF SPHINGOLIPID SIGNALING IN PATHOGENESIS OF LARGE GRANULAR LYMPHOCYTE LEUKEMIA A Dissertation in Molecular Medicine by Mithun Vinod Shah © 2009 Mithun Vinod Shah Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2009 ii The dissertation of Mithun Vinod Shah was reviewed and approved* by the following: Thomas P. Loughran, Jr. Professor of Medicine Dissertation Advisor Co-Chair of Committee Rosalyn B. Irby Assistant Professor of Medicine Co-chair of Committee Gary Clawson Professor of Pathology, and Biochemistry and Molecular Biology Edward J. Gunther Assistant Professor of Medicine Charles H. Lang Director, Molecular Medicine Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Large granular lymphocyte (LGL) leukemia is a disorder of mature cytotoxic cells. LGL leukemia is characterized by accumulation of cytotoxic cells in blood and infiltration in bone marrow and other tissues. Leukemic LGL could arise from expansion of either CD3+ CD8+ T-cells (T-cell LGL leukemia or T-LGL leukemia) or those arising from CD3- natural killer (NK)-cells (NK-cell LGL leukemia or NK-LGL leukemia). LGL leukemia is a rare disorder consisting of less than 5% of non-B cell leukemia. Clinically, LGL leukemia can manifest along a spectrum of disorders ranging from slowly progressing indolent disorder to an aggressive leukemia that could be fatal within months. About fifty percent of LGL leukemia patients also present with variety of autoimmune conditions, rheumatoid arthritis being the most common one. Normally, following antigen clearance, cytotoxic T-lymphocytes (CTL) become sensitive to Fas-mediated apoptosis resulting in activation-induced cell death (AICD).
    [Show full text]
  • Studies of the Adipose Tissue Transcriptome
    YONGHUA ZHANG STUDIES OF THE ADIPOSE TISSUE TRANSCRIPTOME Thèse présentée à la Faculté des études supérieures de l'Université Laval dans le cadre du programme de doctorat en physiologie-endocrinologie pour l'obtention du grade de Philosophire doctor, (Ph.D.) DÉPARTEMENT D'ANATOMIE ET PHYSIOLOGIE FACULTÉ DE MÉDECINE · UNIVERSITÉ LAVAL QUÉBEC 2008 © Y onghua Zhang, 2008 This thesis is dedicated to my wife Li Hao and my son Luc Haoran. RÉSUMÉ Les études disponibles suggèrent que l'expression des gènes et la régulation cellulaire du tissu adipeux pourraient jouer un rôle important dans le développement des complications reliées à l'obésité. L'identification et la caractérisation du transcriptome de tissu adipeux est susceptible d'aider à comprendre davantage la fonction endocrinienne de ce tissu et le rapport entre l'homéostasie de l'énergie et d'autres systèmes physiologiques. Les outils de la génomique fournissent l'avantage d'étudier simultanément l'expression d'un grand nombre de gènes possiblement impliqués dans les maladies associées à l'obésité. Dans cette thèse, nous avons principalement examiné le transcriptome du tissu adipeux dans diverses conditions physiologiques. La conversion de certains stéroïdes a également été étudiée. La méthodologie des micropuces d'expression a été utlisée, en plus des techniques usuelles de la biochimie des tissus adipeux. Nous avons étudié pour la première fois la variabilité d'expression des gènes dans le tissu adipeux sous-cutané et omental chez des hommes obèses. En second lieu, nous avons étudié la réponse du transcriptome de tissu adipeux à la dihydrotestostérone (DHT) chez les souris. Troisièmement, nous avons examiné le métabolisme de la progestérone dans les cellules adipeuses.
    [Show full text]