Discovery and Validation of Breast Cancer Genes

Total Page:16

File Type:pdf, Size:1020Kb

Discovery and Validation of Breast Cancer Genes Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 822 Somatic Mutations in Breast Cancer Genomes Discovery and Validation of Breast Cancer Genes XIANG JIAO ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-8490-3 UPPSALA urn:nbn:se:uu:diva-182319 2012 Dissertation presented at Uppsala University to be publicly examined in Rudbecksalen, Dag Hammarskjölds v 20, Uppsala, Wednesday, November 21, 2012 at 09:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Abstract Jiao, X. 2012. Somatic Mutations in Breast Cancer Genomes: Discovery and Validation of Breast Cancer Genes. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 822. 53 pp. Uppsala. ISBN 978-91-554-8490-3. Breast cancer is the most common cancer in women worldwide. However, the genetic alterations that lead to breast cancer are not fully understood. This thesis aims to identify novel genes of potential mechanistic, diagnostic or therapeutic interest in breast cancers by mutational analysis and whole-genome sequencing. In paper I, sequencing of 36 previously identified candidate genes in 96 breast tumors with patient-matched normal DNA determined the somatic mutation prevalence of these candidate genes and identified additional mutations in Notch, NF-κB, PI3K, and Hedgehog pathways as well as in processes mediating DNA methylation, RNA processing and calcium signaling. In paper II, comparison of massively parallel mate-pair sequencing results of a human genome before and after phi29-mediated multiple displacement amplification (MDA) revealed that MDA introduces structural alteration artifacts, with an emphasis on false positive inversions, and impairs the sensitivity to detect true inversions. Therefore, MDA has limited value in sample preparation for whole-genome sequencing for structural alteration detection. In paper III, massively parallel paired-end sequencing identified gene rearrangements in 15 hormone receptor negative breast cancers. Forty validated rearrangements were predicted to directly affect 30 genes, involved in epigenetic regulation, cell mitosis, signalling transduction and glycolytic flux. RNA interference-based assays revealed the potential roles in cell growth of some affected genes, among which DDX10 was implicated to be involved in apoptosis. In paper IV, a method for statistical evaluation of putative translocations detected by massively parallel paired-end sequencing was proposed. In an application of this method to analyse translocations detected by cancer genome deep paired-end sequencing, 76 putative translocations were classified into four categories, with the majority likely to be caused by mismapping due to repetitive regions. Taken together, this thesis provides insights into genes and pathways mutated in sporadic breast cancer genomes, which broaden our understanding of the genetic basis of breast cancer and may ultimately facilitate the diagnosis and treatment of this disease. Keywords: breast cancer, cancer gene, pathway, somatic mutation, structural alteration, sequencing, whole genome amplification Xiang Jiao, Uppsala University, Department of Immunology, Genetics and Pathology, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden. © Xiang Jiao 2012 ISSN 1651-6206 ISBN 978-91-554-8490-3 urn:nbn:se:uu:diva-182319 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182319) Dedicated to my family 献给我的家人 List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Jiao, X., Wood, L.D., Lindman, M., Jones, S., Buckhaults, P., Polyak, K., Sukumar, S., Carter, H., Kim, D., Karchin, R. and Sjöblom, T. (2012) Somatic mutations in the Notch, NF-KB, PIK3CA, and Hedgehog pathways in human breast cancers. Genes Chromosomes Cancer, 51(5):480–489 II Jiao, X., Rosenlund, M., Hooper, S.D., Tellgren-Roth, C., He, L., Fu, Y., Mangion, J. and Sjöblom, T. (2011) Structural altera- tions from multiple displacement amplification of a human ge- nome revealed by mate-pair sequencing. PLoS ONE, 6(7): e22250 III Hooper, S.D.*, Jiao, X.*, Djureinovic, T., Larsson, C., Wärn- berg, F., Tellgren-Roth, C., Botling, J. and Sjöblom, T. Gene rearrangements in hormone receptor negative breast cancers re- vealed by paired-end sequencing. Submitted IV Hooper, S.D., Jiao, X., Rosenlund, M., Tellgren-Roth, C., Cavelier, L. and Sjöblom, T. Interpreting translocations detect- ed by paired-end sequencing of cancer samples. Submitted *These authors contributed equally to this work. Reprints were made with permission from the respective publishers. Contents Introduction ................................................................................................... 11 The cancer genome ................................................................................... 11 Genome instability as a driver of tumor development ......................... 11 Cancer genes and pathways ................................................................. 12 Technologies to characterize cancer genomes ......................................... 13 Identification of cancer genes prior to the completion of the human genome sequence ................................................................................. 14 New insights into cancer genomics from the completion of the human genome sequence ..................................................................... 14 Massively parallel sequencing technology in cancer genomics .......... 15 The landscape of cancer genomes ............................................................ 17 Breast cancer ............................................................................................ 24 Epidemiology and etiology .................................................................. 24 Pathology and staging .......................................................................... 24 Subtypes and targeted therapy ............................................................. 26 Genomic landscapes ............................................................................ 26 Present Investigation ..................................................................................... 29 Aims ......................................................................................................... 29 Results and discussion .............................................................................. 29 Paper I Genes in Notch, NF-κB, PI3K, and Hedgehog pathways are somatically mutated in human breast cancers ................................ 29 Paper II Phi29-mediated multiple displacement amplification introduces false positive structural alterations detected by whole- genome sequencing .............................................................................. 32 Paper III Somatic gene rearrangements in hormone receptor negative breast cancers ........................................................................ 33 Paper IV Statistical evaluation and interpretation of putative translocations detected by massively parallel paired-end sequencing . 35 Concluding remarks and future perspectives ................................................ 36 Appendix ....................................................................................................... 38 Acknowledgements ....................................................................................... 41 References ..................................................................................................... 43 Abbreviations AJCC American Joint Committee on Cancer CAN-genes Candidate cancer genes CGH Comparative genomic hybridization CGP Cancer Genome Project CHASM Cancer-specific high-throughput annotation of somatic mutations CIN Chromosome instability DCIS Ductal carcinoma in situ ER Estrogen receptor HD Homozygous deletion HER2 Human epidermal growth factor receptor 2 HNPCC Hereditary non-polyposis colon cancer HR Hormone receptor ICGC International Cancer Genome Consortium IDC Invasive ductal carcinoma IHC Immunohistochemistry ILC Invasive lobular carcinoma LOH Loss of heterozygosity MDA Multiple displacement amplification MIN Microsatellite instability MMR Mismatch repair mTOR Mechanistic target of rapamycin MuSiC Mutational significance in cancer PCR Polymerase chain reaction PI3K Phosphoinositide 3-kinase PolyPhen Polymorphism phenotyping PR Progesterone receptor PTK Protein tyrosine kinase PTP Protein tyrosine phosphatase RTK Receptor tyrosine kinase SIFT Sorting intolerant from tolerant TCGA The Cancer Genome Atlas TNBC Triple negative breast cancer WHO World Health Organization Introduction The cancer genome Cancer is, essentially, a genetic disease caused by a series of alterations in genes that control cell growth and proliferation. These alterations can be in the form of changes of one or a few nucleotides, such as point mutations, or displacements of larger DNA segments, namely structural alterations. Struc- tural alterations include translocations, inversions and copy number varia- tions caused by insertions, duplications and deletions. Mutations in cancer genomes are either constitutional or somatic. Constitutional mutations are inherited from a parent and cause hereditary susceptibility to cancer, whereas somatic mutations occur later in tumor development and result in sporadic tumors. In addition, epigenetic alterations that lead to up- and down- regulation of gene expression occur in most cancers 1-2. Genome instability as a driver
Recommended publications
  • Targeting PH Domain Proteins for Cancer Therapy
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2018 Targeting PH domain proteins for cancer therapy Zhi Tan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Medicinal Chemistry and Pharmaceutics Commons, Neoplasms Commons, and the Pharmacology Commons Recommended Citation Tan, Zhi, "Targeting PH domain proteins for cancer therapy" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 910. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/910 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TARGETING PH DOMAIN PROTEINS FOR CANCER THERAPY by Zhi Tan Approval page APPROVED: _____________________________________________ Advisory Professor, Shuxing Zhang, Ph.D. _____________________________________________
    [Show full text]
  • Rare Copy Number Variants Disrupt Genes Regulating Vascular Smooth Muscle Cell Adhesion and Contractility in Sporadic Thoracic Aortic Aneurysms and Dissections
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Rare Copy Number Variants Disrupt Genes Regulating Vascular Smooth Muscle Cell Adhesion and Contractility in Sporadic Thoracic Aortic Aneurysms and Dissections Siddharth K. Prakash,1 Scott A. LeMaire,2,3 Dong-Chuan Guo,4 Ludivine Russell,2 Ellen S. Regalado,4 Hossein Golabbakhsh,4 Ralph J. Johnson,4 Hazim J. Safi,5 Anthony L. Estrera,5 Joseph S. Coselli,2,3 Molly S. Bray,1 Suzanne M. Leal,1 Dianna M. Milewicz,4 and John W. Belmont1,* Thoracic aortic aneurysms and dissections (TAAD) cause significant morbidity and mortality, but the genetic origins of TAAD remain largely unknown. In a genome-wide analysis of 418 sporadic TAAD cases, we identified 47 copy number variant (CNV) regions that were enriched in or unique to TAAD patients compared to population controls. Gene ontology, expression profiling, and network anal- ysis showed that genes within TAAD CNVs regulate smooth muscle cell adhesion or contractility and interact with the smooth muscle- specific isoforms of a-actin and b-myosin, which are known to cause familial TAAD when altered. Enrichment of these gene functions in rare CNVs was replicated in independent cohorts with sporadic TAAD (STAAD, n ¼ 387) and inherited TAAD (FTAAD, n ¼ 88). The over- all prevalence of rare CNVs (23%) was significantly increased in FTAAD compared with STAAD patients (Fisher’s exact test, p ¼ 0.03). Our findings suggest that rare CNVs disrupting smooth muscle adhesion or contraction contribute to both sporadic and familial disease.
    [Show full text]
  • Genes Involved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase- Immortalized Human Urothelial Cells
    Genes Involved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase- Immortalized Human Urothelial Cells Emma J. Chapman,1 Gavin Kelly,2 and Margaret A. Knowles1 1Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom and 2Bioinformatics and Biostatistics Service, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom Abstract non–telomere effects of telomerase and provides further The expression of hTERT, the catalytic subunit of rationale for the use of telomerase inhibitors in UC. telomerase, immortalizes normal human urothelial cells (Mol Cancer Res 2008;6(7):1154–68) (NHUC). Expression of a modified hTERT, without the ability to act in telomere maintenance, did not Introduction immortalize NHUC, confirming that effects at telomeres The primary and well-documented role of telomerase is as are required for urothelial immortalization. Previous a reverse transcriptase that acts in the maintenance of studies indicate that inhibition of telomerase has an telomere length and structure. Up-regulation of telomerase immediate effect on urothelial carcinoma (UC) cell line expression occurs in the majority of urothelial carcinoma viability, before sufficient divisions to account for (UC) irrespective or stage or grade (1), suggesting that this telomere attrition, implicating non–telomere effects may be an early event in tumorigenesis. Normal human of telomerase in UC. We analyzed the effects of urothelial cells (NHUC) are immortalized by expression of telomerase on gene expression in isogenic mortal and hTERT, the catalytic subunit of telomerase. In contrast to hTERT-transduced NHUC. hTERT expression led to requirements for immortalization in other epithelial cell types consistent alterations in the expression of genes and despite the common loss of expression of p16 in UC, predicted to be of phenotypic significance in inactivation of the CDKN2A locus (encoding p16 and tumorigenesis.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Molecular and Genetic
    UNIVERSITY OF CALIFORNIA Los Angeles Molecular and Genetic Study of Human Liposarcoma A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Medical Pharmacology by Kathleen Barzan Smith 2012 ABSTRACT OF THE DISSERTATION Molecular and Genetic Study of Human Liposarcoma by Kathleen Barzan Smith Doctor of Philosophy in Molecular and Medical Pharmacology University of California, Los Angeles, 2012 Professor Frederick C. Eilber, Co-chair Professor Hong Wu, Co-chair Sarcomas are cancers of connective tissue, such as bone, nerves, and muscle. Liposarcoma, a neoplasm arising within adipose tissue, is the most common soft tissue sarcoma. Although most commonly found in the retroperitoneum or thighs, liposarcomas can arise throughout the body and are often large when found. Current treatment is limited to surgery and radiation, with chemotherapy doing little to improve prognosis in advanced cases. D ue to the large size of tumors and t heir proximity to organs and healthy tissue, complete surgical removal is difficult and recurrence rates remain high. Liposarcoma can be divided into three histological subtypes: pleomorphic, myxoid/round cell, and /well- dedifferentiated. Here we demonstrate the generation of three novel dedifferentiated liposarcoma xenograft models from freshly resected patient tissue. These xenograft models and their derived cultured cells successfully recapitulate the morphological and gene expression profiles of their patient tumors throughout serial passage in mice. Interestingly, the patients whose tumors could engraft and be serially passaged had significantly shorter survival than patients whose tumors did not engraft. These ii tumors carried gene expression signatures with more aggressive and less differentiated features.
    [Show full text]
  • Supplementary Table 1. Mutated Genes That Contain Protein Domains Identified Through Mutation Enrichment Analysis
    Supplementary Table 1. Mutated genes that contain protein domains identified through mutation enrichment analysis A. Breast cancers InterPro ID Mutated genes (number of mutations) IPR000219 ARHGEF4(2), ECT2(1), FARP1(1), FLJ20184(1), MCF2L2(1), NET1(1), OBSCN(5), RASGRF2(2), TRAD(1), VAV3(1) IPR000225 APC2(2), JUP(1), KPNA5(2), SPAG6(1) IPR000357 ARFGEF2(2), CMYA4(1), DRIM(2), JUP(1), KPNA5(2), PIK3R4(1), SPAG6(1) IPR000533 AKAP9(2), C10orf39(1), C20orf23(1), CUTL1(1), HOOK1(1), HOOK3(1), KTN1(2), LRRFIP1(3), MYH1(3), MYH9(2), NEF3(1), NF2(1), RSN(1), TAX1BP1(1), TPM4(1) IPR000694 ADAM12(3), ADAMTS19(1), APC2(2), APXL(1), ARID1B(1), BAT2(2), BAT3(1), BCAR1(1), BCL11A(2), BCORL1(1), C14orf155(3), C1orf2(1), C1QB(1), C6orf31(1), C7orf11(1), CD2(1), CENTD3(3), CHD5(3), CIC(3), CMYA1(2), COL11A1(3), COL19A1(2), COL7A1(3), DAZAP1(1), DBN1(3), DVL3(1), EIF5(1), FAM44A(1), FAM47B(1), FHOD1(1), FLJ20584(1), G3BP2(2), GAB1(2), GGA3(1), GLI1(3), GPNMB(2), GRIN2D(3), HCN3(1), HOXA3(2), HOXA4(1), IRS4(1), KCNA5(1), KCNC2(1), LIP8(1), LOC374955(1), MAGEE1(2), MICAL1(2), MICAL‐L1(1), MLLT2(1), MMP15(1), N4BP2(1), NCOA6(2), NHS(1), NUP214(3), ODZ1(3), PER1(2), PER2(1), PHC1(1), PLXNB1(1), PPM1E(2), RAI17(2), RAPH1(2), RBAF600(2), SCARF2(1), SEMA4G(1), SLC16A2(1), SORBS1(1), SPEN(2), SPG4(1), TBX1(1), TCF1(2), TCF7L1(1), TESK1(1), THG‐1(1), TP53(18), TRIF(1), ZBTB3(2), ZNF318(2) IPR000909 CENTB1(2), PLCB1(1), PLCG1(1) IPR000998 AEGP(3), EGFL6(2), PRSS7(1) IPR001140 ABCB10(2), ABCB6(1), ABCB8(2) IPR001164 ARFGAP3(1), CENTB1(2), CENTD3(3), CENTG1(2) IPR001589
    [Show full text]
  • Identification of the Rac Gtpase Activating Protein Rho GAP 22 As a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility
    Identification of the Rac GTPase Activating Protein Rho GAP 22 as a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility Alexander Francis Rowland Submitted for the degree of Doctor of Philosophy Garvan Institute of Medical Research & Faculty of Medicine University of New South Wales ABSTRACT Insulin exerts many of its metabolic actions via the canonical PI3K/Akt pathway leading to phosphorylation and 14-3-3 binding of key metabolic targets. Recognising this, the goal of my thesis was to identify novel actions of insulin. To accomplish this I have conducted a screen to identify insulin-responsive 14-3-3 binding phosphoproteins and in so doing have identified a GTPase Activating Protein (GAP) for Rac1 called Rho GAP 22. Insulin increased 14-3-3 binding to Rho GAP 22 by 4 fold and this effect was PI3Kinase and Akt dependent. Using semi-quantitative mass spectrometry we identified two putative 14-3-3 binding sites (Ser16 and Ser397) within Rho GAP 22 and insulin increased phosphorylation at both of these sites. Mutagenesis studies revealed a complex interplay in phosphorylation at these two sites. Mutating Ser16 to Ala almost completely abolished 14-3-3 binding to Rho GAP 22 in vivo but not in vitro. Phosphorylation of Ser16 both in vitro and in vivo was Akt-dependent and inhibition of Akt prevented 14-3-3 binding to Ser16 in vitro. A truncated Rho GAP 22 protein lacking the N-terminal PH domain and Ser16 interacted with 14-3-3 in vivo and this interaction was Akt dependent. The Ser397 site in Rho GAP 22 is located close to the GAP domain and so it is likely that phosphorylation at this site regulates GAP activity.
    [Show full text]
  • Supplementary Material (ESI) for Molecular Biosystems This Journal Is © the Royal Society of Chemistry 2013
    Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 Supplementary material for Network Analysis of Genomic Alteration Profiles Reveals Co-altered Functional Modules and Driver Genes in Glioblastoma Yunyan Gu1*, Hongwei Wang1, Yao Qin1, Yujing Zhang1, Wenyuan Zhao1, Lishuang Qi1, Yuannv Zhang1, Chenguang Wang1, Zheng Guo1,2* 1 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China 2 Bioinformatics Center, Fujian Medical University, Fuzhou, 350004, China * Corresponding author Email: [email protected] or [email protected] Phone: (86 451) 8661-5933 Fax: (86 451) 8666-9617 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 Table of Contents A. Supplementary Methods (pg 3-4) B. Supplementary Figures (pg 5-11) C. Supplementary Tables (pg 12-19) 2 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 A. Supplementary Methods The pseudo codes for searching co-altered module pair Input: (1) G(V, E), where G is the connected sub-network, V is the set of genes and E is the set of edges in the network; (2) Alteration profiles; Output: R=(M1, M2, …, MN), N module pairs, Mi(G1, G2), i=1…N, will to be discovered and returned. N is also the number of all seed pairs. S is the co-alteration score of the module pair. 1: R=φ. S= 0. N’=1. 2: M(G1, G2) is the module pair that we will discover. 3: repeat 4: Taking each pair of altered genes as a seed pair, also a module pair M(G1, G2), G1={i}, G2={j}.
    [Show full text]
  • The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D
    The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D. Wood,1* D. Williams Parsons,1* Jimmy Lin,1 Thomas Barber,1 Diana Mandelker,1 Rebecca J. Leary,1 Janine Ptak,1 Natalie Silliman,1 Steve Szabo,1 Phillip Buckhaults,2 Christopher Farrell,2 Paul Meeh,2 Sanford D. Markowitz,3 Joseph Willis,4 Dawn Dawson,4 James K. V. Willson,5 Adi F. Gazdar,6 James Hartigan,7 Leo Wu,8 Changsheng Liu,8 Giovanni Parmigiani,9 Ben Ho Park,10 Kurtis E. Bachman,11 Nickolas Papadopoulos,1 Bert Vogelstein,1† Kenneth W. Kinzler,1† Victor E. Velculescu1† 1Ludwig Center and Howard Hughes Medical Institute, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA. 2Department of Pathology and Microbiology, Center for Colon Cancer Research, and South Carolina Cancer Center, Division of Basic Research, University of South Carolina School of Medicine, Columbia, SC 29229, USA. 3Department of Medicine, Ireland Cancer Center, and Howard Hughes Medical Institute, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 4Department of Pathology and Ireland Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 5Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 6Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 7Agencourt Bioscience Corporation, Beverly, MA 01915, USA. 8SoftGenetics LLC, State College, PA 16803, USA. 9Departments of Oncology, Biostatistics, and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
    [Show full text]
  • Analysis of Differential Gene Expression in Colorectal Cancer and Stroma Using Fluorescence- Activated Cell Sorting Purification
    Analysis of differential gene expression in colorectal cancer and stroma using fluorescence- activated cell sorting purification The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Smith, M J, A C Culhane, M Donovan, J C Coffey, B D Barry, M A Kelly, D G Higgins, et al. 2009. “Analysis of Differential Gene Expression in Colorectal Cancer and Stroma Using Fluorescence- Activated Cell Sorting Purification.” British Journal of Cancer 100 (9) (May 5): 1452–1464. doi:10.1038/sj.bjc.6604931. Published Version doi:10.1038/sj.bjc.6604931 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28724495 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Genomics. Author manuscript; available in PMC 2009 June 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Genomics. 2008 June ; 91(6): 508±511. doi:10.1016/j.ygeno.2008.03.002. Functional Classification Analysis of Somatically Mutated Genes in Human Breast and Colorectal Cancers Thomas W. Chittenden*,1,2,3, Eleanor A. Howe*,1, Aedin C. Culhane1,2, Razvan Sultana1, Jennifer M. Taylor4, Chris Holmes3,5, and John Quackenbush1,2 1Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 2Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA 3Department of Statistics, University of Oxford, Oxford, UK 4Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK 5MRC Mammalian Genetics Unit, Harwell, UK.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom Et Al
    USO10787712B2 ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom et al . ( 45 ) Date of Patent : * Sep . 29 , 2020 ( 54 ) CONSENSUS CODING SEQUENCES OF ( 56 ) References Cited HUMAN BREAST AND COLORECTAL CANCERS U.S. PATENT DOCUMENTS 5,605,799 A 2/1997 White et al . ( 71 ) Applicant: The Johns Hopkins University , 8,741,573 B2 * 6/2014 Sjoblom C12Q 1/6886 Baltimore , MD (US ) 435 / 6.14 2001/0021502 Al 9/2001 Swift et al . ( 72 ) Inventors: Tobias Sjoblom , Uppsala ( SE ) ; Sian 2007/0017666 Al 1/2007 Song Jones , Baltimore , MD (US ); D. 2010/0316995 Al 12/2010 Sjoblom et al . Williams Parsons , Bellaire, TX ( US ) ; FOREIGN PATENT DOCUMENTS Laura D. Wood , Baltimore, MD ( US ) ; Jimmy Cheng - Ho Lin , Baltimore , MD EP 785216 7/1997 EP 2543739 1/2013 ( US ) ; Thomas Barber , Nobelsville , TN WO WO 199213103 8/1992 ( US ) ; Diana Mandelker , Baltimore , WO WO 200042436 7/2000 MD ( US ) ; Bert Vogelstein , Baltimore , WO WO 2001042504 6/2001 MD ( US ) ; Kenneth W. Kinzler , WO WO 2004082458 9/2004 Baltimore , MD (US ); Victor E. WO WO 2005113824 12/2005 Velculescu, Dayton , MD ( US ) WO WO 2014110408 7/2014 ( 73 ) Assignee : The Johns Hopkins University , OTHER PUBLICATIONS Baltimore , MD (US ) Allen et al . , “ + A2 : D33The role of molecular markers in the adjuvant Subject to any disclaimer , the term of this treatment of colorectal cancer ,” European Journal of Cancer . Supple ( * ) Notice : ment, Pergamon , Oxfor, GB , vol . 3 , No. 3 , Oct. 1 , 2005 . patent is extended or adjusted under 35 Arai et al ., “ The inv ( 11 ) ( p15222) chromosome translocation of de U.S.C.
    [Show full text]
  • Open Mithun Shah.Pdf
    The Pennsylvania State University The Graduate School Department of Molecular Medicine ROLE OF SPHINGOLIPID SIGNALING IN PATHOGENESIS OF LARGE GRANULAR LYMPHOCYTE LEUKEMIA A Dissertation in Molecular Medicine by Mithun Vinod Shah © 2009 Mithun Vinod Shah Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2009 ii The dissertation of Mithun Vinod Shah was reviewed and approved* by the following: Thomas P. Loughran, Jr. Professor of Medicine Dissertation Advisor Co-Chair of Committee Rosalyn B. Irby Assistant Professor of Medicine Co-chair of Committee Gary Clawson Professor of Pathology, and Biochemistry and Molecular Biology Edward J. Gunther Assistant Professor of Medicine Charles H. Lang Director, Molecular Medicine Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Large granular lymphocyte (LGL) leukemia is a disorder of mature cytotoxic cells. LGL leukemia is characterized by accumulation of cytotoxic cells in blood and infiltration in bone marrow and other tissues. Leukemic LGL could arise from expansion of either CD3+ CD8+ T-cells (T-cell LGL leukemia or T-LGL leukemia) or those arising from CD3- natural killer (NK)-cells (NK-cell LGL leukemia or NK-LGL leukemia). LGL leukemia is a rare disorder consisting of less than 5% of non-B cell leukemia. Clinically, LGL leukemia can manifest along a spectrum of disorders ranging from slowly progressing indolent disorder to an aggressive leukemia that could be fatal within months. About fifty percent of LGL leukemia patients also present with variety of autoimmune conditions, rheumatoid arthritis being the most common one. Normally, following antigen clearance, cytotoxic T-lymphocytes (CTL) become sensitive to Fas-mediated apoptosis resulting in activation-induced cell death (AICD).
    [Show full text]