Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes Notes on Chromatic Harmony © 2010 John Paul Ito Chromatic Modulation Enharmonic modulation Pivot-chord modulation in which the pivot chord is spelled differently in the two keys. Ger +6 (enharmonically equivalent to a dominant seventh) and diminished sevenths are the most popular options. See A/S 534-536 Common-tone modulation Usually a type of phrase modulation. The two keys are distantly related, but the tonic triads share a common tone. (E.g. direct modulation from C major to A-flat major.) In some cases, the common tone may be spelled using an enharmonic equivalent. See A/S 596-599. Common-tone modulations often involve… Chromatic mediant relationships Chromatic mediants were extremely popular with nineteenth-century composers, being used with increasing frequency and freedom as the century progressed. A chromatic mediant relationship is one in which the triadic roots (or tonal centers) are a third apart, and in which at least one of the potential common tones between the triads (or tonic triads of the keys) is not a common tone because of chromatic alterations. In the example above of C major going to A-flat major, the diatonic third relationship with C major would be A minor, which has two common tones (C and E) with C major. Because of the substitution of A-flat major (bVI relative to C) for A minor, there is only one common tone, C, as the C-major triad includes E and the A-flat-major triad contains E-flat. The contrast is even more jarring if A-flat minor is substituted; now there are no common tones. Key relationships based on modal mixture As modal mixture became increasingly prevalent in 19th-century music, mixture chords became almost as standard as diatonic chords, and consonant mixture chords (iv and bVI) often became new tonics in modulations based on modal mixture. Modulations to iv and to bVI are often common-tone modulations. Note that these last two categories are about key relationships; they may arise through any technique of modulation. .
Recommended publications
  • Chord Progressions
    Chord Progressions Part I 2 Chord Progressions The Best Free Chord Progression Lessons on the Web "The recipe for music is part melody, lyric, rhythm, and harmony (chord progressions). The term chord progression refers to a succession of tones or chords played in a particular order for a specified duration that harmonizes with the melody. Except for styles such as rap and free jazz, chord progressions are an essential building block of contemporary western music establishing the basic framework of a song. If you take a look at a large number of popular songs, you will find that certain combinations of chords are used repeatedly because the individual chords just simply sound good together. I call these popular chord progressions the money chords. These money chord patterns vary in length from one- or two-chord progressions to sequences lasting for the whole song such as the twelve-bar blues and thirty-two bar rhythm changes." (Excerpt from Chord Progressions For Songwriters © 2003 by Richard J. Scott) Every guitarist should have a working knowledge of how these chord progressions are created and used in popular music. Click below for the best in free chord progressions lessons available on the web. Ascending Augmented (I-I+-I6-I7) - - 4 Ascending Bass Lines - - 5 Basic Progressions (I-IV) - - 10 Basie Blues Changes - - 8 Blues Progressions (I-IV-I-V-I) - - 15 Blues With A Bridge - - 36 Bridge Progressions - - 37 Cadences - - 50 Canons - - 44 Circle Progressions -- 53 Classic Rock Progressions (I-bVII-IV) -- 74 Coltrane Changes -- 67 Combination
    [Show full text]
  • Surviving Set Theory: a Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory
    Surviving Set Theory: A Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela N. Ripley, M.M. Graduate Program in Music The Ohio State University 2015 Dissertation Committee: David Clampitt, Advisor Anna Gawboy Johanna Devaney Copyright by Angela N. Ripley 2015 Abstract Undergraduate music students often experience a high learning curve when they first encounter pitch-class set theory, an analytical system very different from those they have studied previously. Students sometimes find the abstractions of integer notation and the mathematical orientation of set theory foreign or even frightening (Kleppinger 2010), and the dissonance of the atonal repertoire studied often engenders their resistance (Root 2010). Pedagogical games can help mitigate student resistance and trepidation. Table games like Bingo (Gillespie 2000) and Poker (Gingerich 1991) have been adapted to suit college-level classes in music theory. Familiar television shows provide another source of pedagogical games; for example, Berry (2008; 2015) adapts the show Survivor to frame a unit on theory fundamentals. However, none of these pedagogical games engage pitch- class set theory during a multi-week unit of study. In my dissertation, I adapt the show Survivor to frame a four-week unit on pitch- class set theory (introducing topics ranging from pitch-class sets to twelve-tone rows) during a sophomore-level theory course. As on the show, students of different achievement levels work together in small groups, or “tribes,” to complete worksheets called “challenges”; however, in an important modification to the structure of the show, no students are voted out of their tribes.
    [Show full text]
  • Harmonic Resources in 1980S Hard Rock and Heavy Metal Music
    HARMONIC RESOURCES IN 1980S HARD ROCK AND HEAVY METAL MUSIC A thesis submitted to the College of the Arts of Kent State University in partial fulfillment of the requirements for the degree of Master of Arts in Music Theory by Erin M. Vaughn December, 2015 Thesis written by Erin M. Vaughn B.M., The University of Akron, 2003 M.A., Kent State University, 2015 Approved by ____________________________________________ Richard O. Devore, Thesis Advisor ____________________________________________ Ralph Lorenz, Director, School of Music _____________________________________________ John R. Crawford-Spinelli, Dean, College of the Arts ii Table of Contents LIST OF FIGURES ............................................................................................................................... v CHAPTER I........................................................................................................................................ 1 INTRODUCTION ........................................................................................................................... 1 GOALS AND METHODS ................................................................................................................ 3 REVIEW OF RELATED LITERATURE............................................................................................... 5 CHAPTER II..................................................................................................................................... 36 ANALYSIS OF “MASTER OF PUPPETS” ......................................................................................
    [Show full text]
  • Music Theory Through the Lens of Film
    Journal of Film Music 5.1-2 (2012) 177-196 ISSN (print) 1087-7142 doi:10.1558/jfm.v5i1-2.177 ISSN (online) 1758-860X ARTICLE Music Theory through the Lens of Film FranK LEhman Tufts University [email protected] Abstract: The encounter of a musical repertoire with a theoretical system benefits the latter even as it serves the former. A robustly applied theoretic apparatus hones our appreciation of a given corpus, especially one such as film music, for which comparatively little analytical attention has been devoted. Just as true, if less frequently offered as a motivator for analysis, is the way in which the chosen music theoretical system stands to see its underlying assumptions clarified and its practical resources enhanced by such contact. The innate programmaticism and aesthetic immediacy of film music makes it especially suited to enrich a number of theoretical practices. A habit particularly ripe for this exposure is tonal hermeneutics: the process of interpreting music through its harmonic relationships. Interpreting cinema through harmony not only sharpens our understanding of various film music idioms, but considerably refines the critical machinery behind its analysis. The theoretical approach focused on here is transformation theory, a system devised for analysis of art music (particularly from the nineteenth century) but nevertheless eminently suited for film music. By attending to the perceptually salient changes rather than static objects of musical discourse, transformation theory avoids some of the bugbears of conventional tonal hermeneutics for film (such as the tyranny of the “15 second rule”) while remaining exceptionally well calibrated towards musical structure and detail.
    [Show full text]
  • When the Leading Tone Doesn't Lead: Musical Qualia in Context
    When the Leading Tone Doesn't Lead: Musical Qualia in Context Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Claire Arthur, B.Mus., M.A. Graduate Program in Music The Ohio State University 2016 Dissertation Committee: David Huron, Advisor David Clampitt Anna Gawboy c Copyright by Claire Arthur 2016 Abstract An empirical investigation is made of musical qualia in context. Specifically, scale-degree qualia are evaluated in relation to a local harmonic context, and rhythm qualia are evaluated in relation to a metrical context. After reviewing some of the philosophical background on qualia, and briefly reviewing some theories of musical qualia, three studies are presented. The first builds on Huron's (2006) theory of statistical or implicit learning and melodic probability as significant contributors to musical qualia. Prior statistical models of melodic expectation have focused on the distribution of pitches in melodies, or on their first-order likelihoods as predictors of melodic continuation. Since most Western music is non-monophonic, this first study investigates whether melodic probabilities are altered when the underlying harmonic accompaniment is taken into consideration. This project was carried out by building and analyzing a corpus of classical music containing harmonic analyses. Analysis of the data found that harmony was a significant predictor of scale-degree continuation. In addition, two experiments were carried out to test the perceptual effects of context on musical qualia. In the first experiment participants rated the perceived qualia of individual scale-degrees following various common four-chord progressions that each ended with a different harmony.
    [Show full text]
  • Chromatic Sequences
    CHAPTER 30 Melodic and Harmonic Symmetry Combine: Chromatic Sequences Distinctions Between Diatonic and Chromatic Sequences Sequences are paradoxical musical processes. At the surface level they provide rapid harmonic rhythm, yet at a deeper level they function to suspend tonal motion and prolong an underlying harmony. Tonal sequences move up and down the diatonic scale using scale degrees as stepping-stones. In this chapter, we will explore the consequences of transferring the sequential motions you learned in Chapter 17 from the asymmetry of the diatonic scale to the symmetrical tonal patterns of the nineteenth century. You will likely notice many similarities of behavior between these new chromatic sequences and the old diatonic ones, but there are differences as well. For instance, the stepping-stones for chromatic sequences are no longer the major and minor scales. Furthermore, the chord qualities of each individual harmony inside a chromatic sequence tend to exhibit more homogeneity. Whereas in the past you may have expected major, minor, and diminished chords to alternate inside a diatonic sequence, in the chromatic realm it is not uncommon for all the chords in a sequence to manifest the same quality. EXAMPLE 30.1 Comparison of Diatonic and Chromatic Forms of the D3 ("Pachelbel") Sequence A. 624 CHAPTER 30 MELODIC AND HARMONIC SYMMETRY COMBINE 625 B. Consider Example 30.1A, which contains the D3 ( -4/ +2)-or "descending 5-6"-sequence. The sequence is strongly goal directed (progressing to ii) and diatonic (its harmonies are diatonic to G major). Chord qualities and distances are not consistent, since they conform to the asymmetry of G major.
    [Show full text]
  • Generalized Tonnetze and Zeitnetz, and the Topology of Music Concepts
    June 25, 2019 Journal of Mathematics and Music tonnetzTopologyRev Submitted exclusively to the Journal of Mathematics and Music Last compiled on June 25, 2019 Generalized Tonnetze and Zeitnetz, and the Topology of Music Concepts Jason Yust∗ School of Music, Boston University () The music-theoretic idea of a Tonnetz can be generalized at different levels: as a network of chords relating by maximal intersection, a simplicial complex in which vertices represent notes and simplices represent chords, and as a triangulation of a manifold or other geomet- rical space. The geometrical construct is of particular interest, in that allows us to represent inherently topological aspects to important musical concepts. Two kinds of music-theoretical geometry have been proposed that can house Tonnetze: geometrical duals of voice-leading spaces, and Fourier phase spaces. Fourier phase spaces are particularly appropriate for Ton- netze in that their objects are pitch-class distributions (real-valued weightings of the twelve pitch classes) and proximity in these space relates to shared pitch-class content. They admit of a particularly general method of constructing a geometrical Tonnetz that allows for interval and chord duplications in a toroidal geometry. The present article examines how these du- plications can relate to important musical concepts such as key or pitch-height, and details a method of removing such redundancies and the resulting changes to the homology the space. The method also transfers to the rhythmic domain, defining Zeitnetze for cyclic rhythms. A number of possible Tonnetze are illustrated: on triads, seventh chords, ninth-chords, scalar tetrachords, scales, etc., as well as Zeitnetze on a common types of cyclic rhythms or time- lines.
    [Show full text]
  • Middleground Structure in the Cadenza to Boulez's Éclat
    Middleground Structure in the Cadenza to Boulez’s Éclat C. Catherine Losada NOTE: The examples for the (text-only) PDF version of this item are available online at: hp://www.mtosmt.org/issues/mto.19.25.1/mto.19.25.1.losada.php KEYWORDS: Boulez, Éclat, multiplication, middleground, transformational theory ABSTRACT: Through a transformational analysis of Boulez’s Éclat, this article extends previous understanding of Boulez’s compositional techniques by addressing issues of middleground structure and perception. Presenting a new perspective on this pivotal work, it also sheds light on the development of Boulez’s compositional style. Volume 25, Number 1, May 2019 Copyright © 2019 Society for Music Theory [1] Incorporating both elements of performer’s choice (mainly for the conductor) and an approach to temporality that subverts traditional notions of continuity by invoking the importance of the “moment,”(1) Boulez’s Éclat (1965) is a landmark work from the mid-1960s. It stems from a pivotal period within Boulez’s compositional career, following a time of intense application of novel serial techniques in works that cemented his reputation as a major figure of European modernism (such as Pli selon pli (1957–1962) and the Troisième Sonate (1955–63),(2) but preceding the marked simplification of the musical language that followed Rituel (1974).(3) Piencikowski (1993) has discussed the reliance of much of the central section of Éclat on material from the first version of Don (1960) which in turn is derived from the flute piece Strophes (1957) and from Orestie (1955), and has also thoroughly explained the pitch content of that central section.(4) The material from the framing cadenzas of Éclat, however, has received lile scholarly aention in published form, although Olivier Meston (2001) provides a description of abstract serial processes that could explain the pitch content.(5) One of Meston’s main claims is that the serial processes he presents are not perceptible (10, 16).
    [Show full text]
  • Harmonic Vocabulary in the Music of John Adams: a Hierarchical Approach Author(S): Timothy A
    Yale University Department of Music Harmonic Vocabulary in the Music of John Adams: A Hierarchical Approach Author(s): Timothy A. Johnson Source: Journal of Music Theory, Vol. 37, No. 1 (Spring, 1993), pp. 117-156 Published by: Duke University Press on behalf of the Yale University Department of Music Stable URL: http://www.jstor.org/stable/843946 Accessed: 06-07-2017 19:50 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Yale University Department of Music, Duke University Press are collaborating with JSTOR to digitize, preserve and extend access to Journal of Music Theory This content downloaded from 198.199.32.254 on Thu, 06 Jul 2017 19:50:30 UTC All use subject to http://about.jstor.org/terms HARMONIC VOCABULARY IN THE MUSIC OF JOHN ADAMS: A HIERARCHICAL APPROACH Timothy A. Johnson Overview Following the minimalist tradition, much of John Adams's' music consists of long passages employing a single set of pitch classes (pcs) usually encompassed by one diatonic set.2 In many of these passages the pcs form a single diatonic triad or seventh chord with no additional pcs. In other passages textural and registral formations imply a single triad or seventh chord, but additional pcs obscure this chord to some degree.
    [Show full text]
  • Transfer Theory Placement Exam Guide (Pdf)
    2016-17 GRADUATE/ transfer THEORY PLACEMENT EXAM guide! Texas woman’s university ! ! 1 2016-17 GRADUATE/transferTHEORY PLACEMENTEXAMguide This! guide is meant to help graduate and transfer students prepare for the Graduate/ Transfer Theory Placement Exam. This evaluation is meant to ensure that students have competence in basic tonal harmony. There are two parts to the exam: written and aural. Part One: Written Part Two: Aural ‣ Four voice part-writing to a ‣ Melodic dictation of a given figured bass diatonic melody ‣ Harmonic analysis using ‣ Harmonic Dictation of a Roman numerals diatonic progression, ‣ Transpose a notated notating the soprano, bass, passage to a new key and Roman numerals ‣ Harmonization of a simple ‣ Sightsinging of a melody diatonic melody that contains some functional chromaticism ! Students must achieve a 75% on both the aural and written components of the exam. If a passing score is not received on one or both sections of the exam, the student may be !required to take remedial coursework. Recommended review materials include most of the commonly used undergraduate music theory texts such as: Tonal Harmony by Koska, Payne, and Almén, The Musician’s Guide to Theory and Analysis by Clendinning and Marvin, and Harmony in Context by Francoli. The exam is given prior to the beginning of both the Fall and Spring Semesters. Please check the TWU MUSIc website (www.twu.edu/music) ! for the exact date and time. ! For further information, contact: Dr. Paul Thomas Assistant Professor of Music Theory and Composition [email protected] 2 2016-17 ! ! ! ! table of Contents ! ! ! ! ! 04 Part-Writing ! ! ! ! ! 08 melody harmonization ! ! ! ! ! 13 transposition ! ! ! ! ! 17 Analysis ! ! ! ! ! 21 melodic dictation ! ! ! ! ! harmonic dictation ! 24 ! ! ! ! Sightsinging examples ! 28 ! ! ! 31 terms ! ! ! ! ! 32 online resources ! 3 PART-Writing Part-writing !Realize the following figured bass in four voices.
    [Show full text]
  • Motivic Similarity and Form in Boulez's Anthèmes
    Motivic similarity and form in Boulez’s Anthèmes Cecilia Taher Music Theory Area, Department of Music Research Schulich School of Music, McGill University Montreal, Canada June 2016 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. © 2016 Cecilia Taher i To the memory of the musical genius Pierre Boulez (1925-2016), whose music and words inspired the very genesis of this research project. ii iii Abstract This dissertation combines theoretical, analytical, and empirical methods to study aspects of motivic similarity and form in Boulez’s Anthèmes. The concept of similarity is central to the definition of motives and musical form. Nevertheless, little is known about the perception of motivic relationships and form while listening to post-tonal music. The most traditional theoretical methods used for post-tonal analysis (such as pitch-class set theory) have tended to emphasize abstract similarity relations based on local pitch and interval structures, disregarding features other than pitch as well as larger formal levels. However, experimental research has demonstrated that the perception of these pitch relationships in post-tonal music is secondary and extremely difficult. According to the empirical evidence, the kinds of structures that are particularly salient during music listening (including post-tonal music listening) are defined by both local- and global-level relationships involving surface features such as articulation and rhythm. This marks a gap between theoretical and perceptual research agendas. Boulez seemed to be aware of this disconnect, as he explicitly intended to reconcile perception with compositional practice. He described the form of Anthèmes in terms of constantly changing yet clearly recognizable motives, with surface features acting as large-scale formal markers.
    [Show full text]
  • Parallel Keys and Remote Modulation in Selected String
    1 MacKay, James. “Another Look at Chromatic Third-Related Key Relationships in Late Haydn: Parallel Keys and Remote Modulation in Selected String Quartet Minuets.”.” HAYDN: Online Journal of the Haydn Society of North America 8.2 (Fall 2018), http://haydnjournal.org. © RIT Press and Haydn Society of North America, 2018. Duplication without the express permission of the author, RIT Press, and/or the Haydn Society of North America is prohibited. Another Look at Chromatic Third-Related Key Relationships in Late Haydn: Parallel Keys and Remote Modulation in Selected String Quartet Minuets by James MacKay Loyola University Abstract As asserted by Ethan Haimo in a 1990 article, Joseph Haydn’s Piano Trio in A-flat major, Hob. XV: 14 (1789-90), comprises his first use of a chromatic third relationship between movements of an instrumental work, with a I—flat VI—I tonal plan. This harmonic strategy, immediately taken up by Beethoven in his Piano Trio in G major, Op. 1 no. 2 (slow movement in E, VI) and his Piano Sonata in C major, Op. 2 no. 3 (slow movement in E, III), quickly became a conventional feature of early 19th-century tonality. Such third-related shifts in Haydn’s instrumental music occur earlier than 1790, especially in his string quartet Minuet-Trio movements, often built around a parallel major-parallel minor pairing of keys and their relatives. For instance, in Haydn’s String Quartet in F major, Op. 50 no. 5 (Der Traum), third movement, Haydn effects a chromatic third modulation in two stages: touching briefly upon the parallel key (f minor) in the trio, then moving immediately to its relative major, A-flat (i.e.
    [Show full text]