Chromatic Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings
Fakult¨at fur¨ Elektrotechnik und Informationstechnik Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings Christof Weiß geboren am 16.07.1986 in Regensburg Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) Angefertigt im: Fachgebiet Elektronische Medientechnik Institut fur¨ Medientechnik Fakult¨at fur¨ Elektrotechnik und Informationstechnik Gutachter: Prof. Dr.-Ing. Dr. rer. nat. h. c. mult. Karlheinz Brandenburg Prof. Dr. rer. nat. Meinard Muller¨ Prof. Dr. phil. Wolfgang Auhagen Tag der Einreichung: 25.11.2016 Tag der wissenschaftlichen Aussprache: 03.04.2017 urn:nbn:de:gbv:ilm1-2017000293 iii Acknowledgements This thesis could not exist without the help of many people. I am very grateful to everybody who supported me during the work on my PhD. First of all, I want to thank Prof. Karlheinz Brandenburg for supervising my thesis but also, for the opportunity to work within a great team and a nice working enviroment at Fraunhofer IDMT in Ilmenau. I also want to mention my colleagues of the Metadata department for having such a friendly atmosphere including motivating scientific discussions, musical activity, and more. In particular, I want to thank all members of the Semantic Music Technologies group for the nice group climate and for helping with many things in research and beyond. Especially|thank you Alex, Ronny, Christian, Uwe, Estefan´ıa, Patrick, Daniel, Ania, Christian, Anna, Sascha, and Jakob for not only having a prolific working time in Ilmenau but also making friends there. Furthermore, I want to thank several students at TU Ilmenau who worked with me on my topic. Special thanks go to Prof. -
Out of Death and Despair: Elements of Chromaticism in the Songs of Edvard Grieg
Ryan Weber: Out of Death and Despair: Elements of Chromaticism in the Songs of Edvard Grieg Grieg‘s intriguing statement, ―the realm of harmonies has always been my dream world,‖1 suggests the rather imaginative disposition that he held toward the roles of harmonic function within a diatonic pitch space. A great degree of his chromatic language is manifested in subtle interactions between different pitch spaces along the dualistic lines to which he referred in his personal commentary. Indeed, Grieg‘s distinctive style reaches beyond common-practice tonality in ways other than modality. Although his music uses a variety of common nineteenth- century harmonic devices, his synthesis of modal elements within a diatonic or chromatic framework often leans toward an aesthetic of Impressionism. This multifarious language is most clearly evident in the composer‘s abundant songs that span his entire career. Setting texts by a host of different poets, Grieg develops an approach to chromaticism that reflects the Romantic themes of death and despair. There are two techniques that serve to characterize aspects of his multi-faceted harmonic language. The first, what I designate ―chromatic juxtapositioning,‖ entails the insertion of highly chromatic material within ^ a principally diatonic passage. The second technique involves the use of b7 (bVII) as a particular type of harmonic juxtapositioning, for the flatted-seventh scale-degree serves as a congruent agent among the realms of diatonicism, chromaticism, and modality while also serving as a marker of death and despair. Through these techniques, Grieg creates a style that elevates the works of geographically linked poets by capitalizing on the Romantic/nationalistic themes. -
Theory Placement Examination (D
SAMPLE Placement Exam for Incoming Grads Name: _______________________ (Compiled by David Bashwiner, University of New Mexico, June 2013) WRITTEN EXAM I. Scales Notate the following scales using accidentals but no key signatures. Write the scale in both ascending and descending forms only if they differ. B major F melodic minor C-sharp harmonic minor II. Key Signatures Notate the following key signatures on both staves. E-flat minor F-sharp major Sample Graduate Theory Placement Examination (D. Bashwiner, UNM, 2013) III. Intervals Identify the specific interval between the given pitches (e.g., m2, M2, d5, P5, A5). Interval: ________ ________ ________ ________ ________ Note: the sharp is on the A, not the G. Interval: ________ ________ ________ ________ ________ IV. Rhythm and Meter Write the following rhythmic series first in 3/4 and then in 6/8. You may have to break larger durations into smaller ones connected by ties. Make sure to use beams and ties to clarify the meter (i.e. divide six-eight bars into two, and divide three-four bars into three). 2 Sample Graduate Theory Placement Examination (D. Bashwiner, UNM, 2013) V. Triads and Seventh Chords A. For each of the following sonorities, indicate the root of the chord, its quality, and its figured bass (being sure to include any necessary accidentals in the figures). For quality of chord use the following abbreviations: M=major, m=minor, d=diminished, A=augmented, MM=major-major (major triad with a major seventh), Mm=major-minor, mm=minor-minor, dm=diminished-minor (half-diminished), dd=fully diminished. Root: Quality: Figured Bass: B. -
Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors
Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors Richard Bass Journal of Music Theory, Vol. 38, No. 2. (Autumn, 1994), pp. 155-186. Stable URL: http://links.jstor.org/sici?sici=0022-2909%28199423%2938%3A2%3C155%3AMOOAWI%3E2.0.CO%3B2-X Journal of Music Theory is currently published by Yale University Department of Music. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/yudm.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon Jul 30 09:19:06 2007 MODELS OF OCTATONIC AND WHOLE-TONE INTERACTION: GEORGE CRUMB AND HIS PREDECESSORS Richard Bass A bifurcated view of pitch structure in early twentieth-century music has become more explicit in recent analytic writings. -
Kostka, Stefan
TEN Classical Serialism INTRODUCTION When Schoenberg composed the first twelve-tone piece in the summer of 192 1, I the "Pre- lude" to what would eventually become his Suite, Op. 25 (1923), he carried to a conclusion the developments in chromaticism that had begun many decades earlier. The assault of chromaticism on the tonal system had led to the nonsystem of free atonality, and now Schoenberg had developed a "method [he insisted it was not a "system"] of composing with twelve tones that are related only with one another." Free atonality achieved some of its effect through the use of aggregates, as we have seen, and many atonal composers seemed to have been convinced that atonality could best be achieved through some sort of regular recycling of the twelve pitch class- es. But it was Schoenberg who came up with the idea of arranging the twelve pitch classes into a particular series, or row, th at would remain essentially constant through- out a composition. Various twelve-tone melodies that predate 1921 are often cited as precursors of Schoenberg's tone row, a famous example being the fugue theme from Richard Strauss's Thus Spake Zararhustra (1895). A less famous example, but one closer than Strauss's theme to Schoenberg'S method, is seen in Example IO-\. Notice that Ives holds off the last pitch class, C, for measures until its dramatic entrance in m. 68. Tn the music of Strauss and rves th e twelve-note theme is a curiosity, but in the mu sic of Schoenberg and his fo ll owers the twelve-note row is a basic shape that can be presented in four well-defined ways, thereby assuring a certain unity in the pitch domain of a composition. -
MTO 20.2: Wild, Vicentino's 31-Tone Compositional Theory
Volume 20, Number 2, June 2014 Copyright © 2014 Society for Music Theory Genus, Species and Mode in Vicentino’s 31-tone Compositional Theory Jonathan Wild NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.2/mto.14.20.2.wild.php KEYWORDS: Vicentino, enharmonicism, chromaticism, sixteenth century, tuning, genus, species, mode ABSTRACT: This article explores the pitch structures developed by Nicola Vicentino in his 1555 treatise L’Antica musica ridotta alla moderna prattica . I examine the rationale for his background gamut of 31 pitch classes, and document the relationships among his accounts of the genera, species, and modes, and between his and earlier accounts. Specially recorded and retuned audio examples illustrate some of the surviving enharmonic and chromatic musical passages. Received February 2014 Table of Contents Introduction [1] Tuning [4] The Archicembalo [8] Genus [10] Enharmonic division of the whole tone [13] Species [15] Mode [28] Composing in the genera [32] Conclusion [35] Introduction [1] In his treatise of 1555, L’Antica musica ridotta alla moderna prattica (henceforth L’Antica musica ), the theorist and composer Nicola Vicentino describes a tuning system comprising thirty-one tones to the octave, and presents several excerpts from compositions intended to be sung in that tuning. (1) The rich compositional theory he develops in the treatise, in concert with the few surviving musical passages, offers a tantalizing glimpse of an alternative pathway for musical development, one whose radically augmented pitch materials make possible a vast range of novel melodic gestures and harmonic successions. -
Chord Progressions
Chord Progressions Part I 2 Chord Progressions The Best Free Chord Progression Lessons on the Web "The recipe for music is part melody, lyric, rhythm, and harmony (chord progressions). The term chord progression refers to a succession of tones or chords played in a particular order for a specified duration that harmonizes with the melody. Except for styles such as rap and free jazz, chord progressions are an essential building block of contemporary western music establishing the basic framework of a song. If you take a look at a large number of popular songs, you will find that certain combinations of chords are used repeatedly because the individual chords just simply sound good together. I call these popular chord progressions the money chords. These money chord patterns vary in length from one- or two-chord progressions to sequences lasting for the whole song such as the twelve-bar blues and thirty-two bar rhythm changes." (Excerpt from Chord Progressions For Songwriters © 2003 by Richard J. Scott) Every guitarist should have a working knowledge of how these chord progressions are created and used in popular music. Click below for the best in free chord progressions lessons available on the web. Ascending Augmented (I-I+-I6-I7) - - 4 Ascending Bass Lines - - 5 Basic Progressions (I-IV) - - 10 Basie Blues Changes - - 8 Blues Progressions (I-IV-I-V-I) - - 15 Blues With A Bridge - - 36 Bridge Progressions - - 37 Cadences - - 50 Canons - - 44 Circle Progressions -- 53 Classic Rock Progressions (I-bVII-IV) -- 74 Coltrane Changes -- 67 Combination -
Surviving Set Theory: a Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory
Surviving Set Theory: A Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela N. Ripley, M.M. Graduate Program in Music The Ohio State University 2015 Dissertation Committee: David Clampitt, Advisor Anna Gawboy Johanna Devaney Copyright by Angela N. Ripley 2015 Abstract Undergraduate music students often experience a high learning curve when they first encounter pitch-class set theory, an analytical system very different from those they have studied previously. Students sometimes find the abstractions of integer notation and the mathematical orientation of set theory foreign or even frightening (Kleppinger 2010), and the dissonance of the atonal repertoire studied often engenders their resistance (Root 2010). Pedagogical games can help mitigate student resistance and trepidation. Table games like Bingo (Gillespie 2000) and Poker (Gingerich 1991) have been adapted to suit college-level classes in music theory. Familiar television shows provide another source of pedagogical games; for example, Berry (2008; 2015) adapts the show Survivor to frame a unit on theory fundamentals. However, none of these pedagogical games engage pitch- class set theory during a multi-week unit of study. In my dissertation, I adapt the show Survivor to frame a four-week unit on pitch- class set theory (introducing topics ranging from pitch-class sets to twelve-tone rows) during a sophomore-level theory course. As on the show, students of different achievement levels work together in small groups, or “tribes,” to complete worksheets called “challenges”; however, in an important modification to the structure of the show, no students are voted out of their tribes. -
I. the Term Стр. 1 Из 93 Mode 01.10.2013 Mk:@Msitstore:D
Mode Стр. 1 из 93 Mode (from Lat. modus: ‘measure’, ‘standard’; ‘manner’, ‘way’). A term in Western music theory with three main applications, all connected with the above meanings of modus: the relationship between the note values longa and brevis in late medieval notation; interval, in early medieval theory; and, most significantly, a concept involving scale type and melody type. The term ‘mode’ has always been used to designate classes of melodies, and since the 20th century to designate certain kinds of norm or model for composition or improvisation as well. Certain phenomena in folksong and in non-Western music are related to this last meaning, and are discussed below in §§IV and V. The word is also used in acoustical parlance to denote a particular pattern of vibrations in which a system can oscillate in a stable way; see Sound, §5(ii). For a discussion of mode in relation to ancient Greek theory see Greece, §I, 6 I. The term II. Medieval modal theory III. Modal theories and polyphonic music IV. Modal scales and traditional music V. Middle East and Asia HAROLD S. POWERS/FRANS WIERING (I–III), JAMES PORTER (IV, 1), HAROLD S. POWERS/JAMES COWDERY (IV, 2), HAROLD S. POWERS/RICHARD WIDDESS (V, 1), RUTH DAVIS (V, 2), HAROLD S. POWERS/RICHARD WIDDESS (V, 3), HAROLD S. POWERS/MARC PERLMAN (V, 4(i)), HAROLD S. POWERS/MARC PERLMAN (V, 4(ii) (a)–(d)), MARC PERLMAN (V, 4(ii) (e)–(i)), ALLAN MARETT, STEPHEN JONES (V, 5(i)), ALLEN MARETT (V, 5(ii), (iii)), HAROLD S. POWERS/ALLAN MARETT (V, 5(iv)) Mode I. -
Lecture Notes
Notes on Chromatic Harmony © 2010 John Paul Ito Chromatic Modulation Enharmonic modulation Pivot-chord modulation in which the pivot chord is spelled differently in the two keys. Ger +6 (enharmonically equivalent to a dominant seventh) and diminished sevenths are the most popular options. See A/S 534-536 Common-tone modulation Usually a type of phrase modulation. The two keys are distantly related, but the tonic triads share a common tone. (E.g. direct modulation from C major to A-flat major.) In some cases, the common tone may be spelled using an enharmonic equivalent. See A/S 596-599. Common-tone modulations often involve… Chromatic mediant relationships Chromatic mediants were extremely popular with nineteenth-century composers, being used with increasing frequency and freedom as the century progressed. A chromatic mediant relationship is one in which the triadic roots (or tonal centers) are a third apart, and in which at least one of the potential common tones between the triads (or tonic triads of the keys) is not a common tone because of chromatic alterations. In the example above of C major going to A-flat major, the diatonic third relationship with C major would be A minor, which has two common tones (C and E) with C major. Because of the substitution of A-flat major (bVI relative to C) for A minor, there is only one common tone, C, as the C-major triad includes E and the A-flat-major triad contains E-flat. The contrast is even more jarring if A-flat minor is substituted; now there are no common tones. -
When the Leading Tone Doesn't Lead: Musical Qualia in Context
When the Leading Tone Doesn't Lead: Musical Qualia in Context Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Claire Arthur, B.Mus., M.A. Graduate Program in Music The Ohio State University 2016 Dissertation Committee: David Huron, Advisor David Clampitt Anna Gawboy c Copyright by Claire Arthur 2016 Abstract An empirical investigation is made of musical qualia in context. Specifically, scale-degree qualia are evaluated in relation to a local harmonic context, and rhythm qualia are evaluated in relation to a metrical context. After reviewing some of the philosophical background on qualia, and briefly reviewing some theories of musical qualia, three studies are presented. The first builds on Huron's (2006) theory of statistical or implicit learning and melodic probability as significant contributors to musical qualia. Prior statistical models of melodic expectation have focused on the distribution of pitches in melodies, or on their first-order likelihoods as predictors of melodic continuation. Since most Western music is non-monophonic, this first study investigates whether melodic probabilities are altered when the underlying harmonic accompaniment is taken into consideration. This project was carried out by building and analyzing a corpus of classical music containing harmonic analyses. Analysis of the data found that harmony was a significant predictor of scale-degree continuation. In addition, two experiments were carried out to test the perceptual effects of context on musical qualia. In the first experiment participants rated the perceived qualia of individual scale-degrees following various common four-chord progressions that each ended with a different harmony. -
Studies in Instrumentation and Orchestration and in the Recontextualisation of Diatonic Pitch Materials (Portfolio of Compositions)
Studies in Instrumentation and Orchestration and in the Recontextualisation of Diatonic Pitch Materials (Portfolio of Compositions) by Chris Paul Harman Submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Department of Music School of Humanities The University of Birmingham September 2011 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract: The present document examines eight musical works for various instruments and ensembles, composed between 2007 and 2011. Brief summaries of each work’s program are followed by discussions of instrumentation and orchestration, and analysis of pitch organization. Discussions of instrumentation and orchestration explore the composer’s approach to diversification of instrumental ensembles by the inclusion of non-orchestral instruments, and redefinition of traditional hierarchies among instruments in a standard ensemble or orchestral setting. Analyses of pitch organization detail various ways in which the composer renders diatonic