Parallel Keys and Remote Modulation in Selected String
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
John Corigliano's Fantasia on an Ostinato, Miguel Del Aguila's Conga for Piano, and William Bolcom's Nine New Bagatelles
Graduate Theses, Dissertations, and Problem Reports 2016 Pedagogical and Performance Aspects of Three American Compositions for Solo Piano: John Corigliano's Fantasia on an Ostinato, Miguel del Aguila's Conga for Piano, and William Bolcom's Nine New Bagatelles Tse Wei Chai Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Chai, Tse Wei, "Pedagogical and Performance Aspects of Three American Compositions for Solo Piano: John Corigliano's Fantasia on an Ostinato, Miguel del Aguila's Conga for Piano, and William Bolcom's Nine New Bagatelles" (2016). Graduate Theses, Dissertations, and Problem Reports. 5331. https://researchrepository.wvu.edu/etd/5331 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Pedagogical and Performance Aspects of Three American Compositions for Solo Piano: John Corigliano’s Fantasia on an Ostinato, Miguel del Aguila’s Conga for Piano, and William Bolcom’s Nine New Bagatelles Tse Wei Chai A Doctoral Research Project submitted to The College of Creative Arts at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Musical Arts in Piano Performance James Miltenberger, D.M.A., Committee Chair & Research Advisor Peter Amstutz, D.M.A. -
Rediscovering Frédéric Chopin's "Trois Nouvelles Études" Qiao-Shuang Xian Louisiana State University and Agricultural and Mechanical College, [email protected]
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 Rediscovering Frédéric Chopin's "Trois Nouvelles Études" Qiao-Shuang Xian Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Music Commons Recommended Citation Xian, Qiao-Shuang, "Rediscovering Frédéric Chopin's "Trois Nouvelles Études"" (2002). LSU Doctoral Dissertations. 2432. https://digitalcommons.lsu.edu/gradschool_dissertations/2432 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. REDISCOVERING FRÉDÉRIC CHOPIN’S TROIS NOUVELLES ÉTUDES A Monograph Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Musical Arts in The School of Music by Qiao-Shuang Xian B.M., Columbus State University, 1996 M.M., Louisiana State University, 1998 December 2002 TABLE OF CONTENTS LIST OF EXAMPLES ………………………………………………………………………. iii LIST OF FIGURES …………………………………………………………………………… v ABSTRACT …………………………………………………………………………………… vi CHAPTER 1. INTRODUCTION…………………………………………………………….. 1 The Rise of Piano Methods …………………………………………………………….. 1 The Méthode des Méthodes de piano of 1840 -
Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings
Fakult¨at fur¨ Elektrotechnik und Informationstechnik Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings Christof Weiß geboren am 16.07.1986 in Regensburg Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) Angefertigt im: Fachgebiet Elektronische Medientechnik Institut fur¨ Medientechnik Fakult¨at fur¨ Elektrotechnik und Informationstechnik Gutachter: Prof. Dr.-Ing. Dr. rer. nat. h. c. mult. Karlheinz Brandenburg Prof. Dr. rer. nat. Meinard Muller¨ Prof. Dr. phil. Wolfgang Auhagen Tag der Einreichung: 25.11.2016 Tag der wissenschaftlichen Aussprache: 03.04.2017 urn:nbn:de:gbv:ilm1-2017000293 iii Acknowledgements This thesis could not exist without the help of many people. I am very grateful to everybody who supported me during the work on my PhD. First of all, I want to thank Prof. Karlheinz Brandenburg for supervising my thesis but also, for the opportunity to work within a great team and a nice working enviroment at Fraunhofer IDMT in Ilmenau. I also want to mention my colleagues of the Metadata department for having such a friendly atmosphere including motivating scientific discussions, musical activity, and more. In particular, I want to thank all members of the Semantic Music Technologies group for the nice group climate and for helping with many things in research and beyond. Especially|thank you Alex, Ronny, Christian, Uwe, Estefan´ıa, Patrick, Daniel, Ania, Christian, Anna, Sascha, and Jakob for not only having a prolific working time in Ilmenau but also making friends there. Furthermore, I want to thank several students at TU Ilmenau who worked with me on my topic. Special thanks go to Prof. -
On Modulation —
— On Modulation — Dean W. Billmeyer University of Minnesota American Guild of Organists National Convention June 25, 2008 Some Definitions • “…modulating [is] going smoothly from one key to another….”1 • “Modulation is the process by which a change of tonality is made in a smooth and convincing way.”2 • “In tonal music, a firmly established change of key, as opposed to a passing reference to another key, known as a ‘tonicization’. The scale or pitch collection and characteristic harmonic progressions of the new key must be present, and there will usually be at least one cadence to the new tonic.”3 Some Considerations • “Smoothness” is not necessarily a requirement for a successful modulation, as much tonal literature will illustrate. A “convincing way” is a better criterion to consider. • A clear establishment of the new key is important, and usually a duration to the modulation of some length is required for this. • Understanding a modulation depends on the aural perception of the listener; hence, some ambiguity is inherent in distinguishing among a mere tonicization, a “false” modulation, and a modulation. • A modulation to a “foreign” key may be easier to accomplish than one to a diatonically related key: the ear is forced to interpret a new key quickly when there is a large change in the number of accidentals (i.e., the set of pitch classes) in the keys used. 1 Max Miller, “A First Step in Keyboard Modulation”, The American Organist, October 1982. 2 Charles S. Brown, CAGO Study Guide, 1981. 3 Janna Saslaw: “Modulation”, Grove Music Online ed. L. Macy (Accessed 5 May 2008), http://www.grovemusic.com. -
Many of Us Are Familiar with Popular Major Chord Progressions Like I–IV–V–I
Many of us are familiar with popular major chord progressions like I–IV–V–I. Now it’s time to delve into the exciting world of minor chords. Minor scales give flavor and emotion to a song, adding a level of musical depth that can make a mediocre song moving and distinct from others. Because so many of our favorite songs are in major keys, those that are in minor keys1 can stand out, and some musical styles like rock or jazz thrive on complex minor scales and harmonic wizardry. Minor chord progressions generally contain richer harmonic possibilities than the typical major progressions. Minor key songs frequently modulate to major and back to minor. Sometimes the same chord can appear as major and minor in the very same song! But this heady harmonic mix is nothing to be afraid of. By the end of this article, you’ll not only understand how minor chords are made, but you’ll know some common minor chord progressions, how to write them, and how to use them in your own music. With enough listening practice, you’ll be able to recognize minor chord progressions in songs almost instantly! Table of Contents: 1. A Tale of Two Tonalities 2. Major or Minor? 3. Chords in Minor Scales 4. The Top 3 Chords in Minor Progressions 5. Exercises in Minor 6. Writing Your Own Minor Chord Progressions 7. Your Minor Journey 1 https://www.musical-u.com/learn/the-ultimate-guide-to-minor-keys A Tale of Two Tonalities Western music is dominated by two tonalities: major and minor. -
Ludwig Van Beethoven a Brilliant Pianist, but When Born: December 16, 1770 He Was Around 30 Years Old Died: March 26, 1827 Beethoven Began Going Deaf
SymphonySecond No. Movement 8 in F Major Ludwig van Beethoven a brilliant pianist, but when Born: December 16, 1770 he was around 30 years old Died: March 26, 1827 Beethoven began going deaf. Even though he could no Ludwig van Beethoven was longer hear well enough to born in Bonn, Germany. His play the piano, Beethoven father, who was a singer, composed some of his best was his first teacher. After a music after he lost his while, even though he was hearing! still only a boy, Ludwig became a traveling Beethoven is considered performer, and soon he was one of the greatest musical supporting his family. geniuses who ever lived. He may be most famous for his In his early twenties nine symphonies, but he also Beethoven moved to Vienna, wrote many other kinds of where he spent the rest of music: chamber and choral his life. Beethoven was one pieces, piano works, string of the first composers to quartets, and an opera. make a living without being employed by the church or a member of the nobility. At first, he was known as Beethoven’s Music Listen to the second movement of Beethoven’s 8th Symphony, then answer the questions below. 1. How many “ticks” do you hear before the melody begins? a. 2 b. 5 c. 7 d. 8 2. What instrument plays the melody first? a. violin b. viola c. cello d. bass 3. Does the orchestra get loud suddenly? a. yes b. no 4. Does the music sound like it’s jumping around the orchestra? a. -
Music Theory Syllabus (With Introduction to Music) Frenship
Music Theory Syllabus (with Introduction to Music) 1306.030 Frenship High School Blue Days 12:54-2:24pm 2020-2021 Instructor: Angela Bradford Office: Room 1316 Phone: 806-866-4440, ext. 1028 Email: [email protected] Remind: Text to 81010 and message @329a99b Conference Times: 2:30-4:00pm, Blue and Gold days Course Text: Tonal Harmony by Stefan Kostka, Dorothy Payne and Byron Almen, 7th Edition. (Provided) Supplemental Material: Barron’s AP Music Theory by Nancy Scoggin (Optional) Course Purpose: The purpose of this Dual Credit course is to teach the language of Music Theory to students and help them develop the skills and knowledge to build students music literacy (reading, writing, hearing intelligently, and respond or performing) through analysis and composition. Course Overview: A) Oral Quizzes B) Score analysis C) Error Detection D) Aural association E) Association with familiar music Grading: 50% Written theory and composition- Daily Work (Fundamentals and Analysis) and Assessment Grades – 25% Composition 1 – 5%, Composition 2 – 5%, Composition 3 - 15% 30% Ear training – Intervals, Inversions, Chords, Scales on Assessment and quiz grades 20% Oral training (Sight-Reading), music literature and history (composers and music periods), and piano fundamentals in practice (chords, scales in major and minor, intervals) Course Outline: 1st Six Weeks Week 1 (2-3 class meetings - 1hr. 30 minutes class) Chap. 1 Elements of Pitch and Chap. 2 Elements of Rhythm 1 Notation a) The aspects of sound: pitch, amplitude, timbre, envelope (articulation) and duration. b) After a brief explanation of each, discuss aspects of notation as they relate to aspects of sound. -
AP Music Theory Course Description Audio Files ”
MusIc Theory Course Description e ffective Fall 2 0 1 2 AP Course Descriptions are updated regularly. Please visit AP Central® (apcentral.collegeboard.org) to determine whether a more recent Course Description PDF is available. The College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of more than 5,900 of the world’s leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success — including the SAT® and the Advanced Placement Program®. The organization also serves the education community through research and advocacy on behalf of students, educators, and schools. For further information, visit www.collegeboard.org. AP Equity and Access Policy The College Board strongly encourages educators to make equitable access a guiding principle for their AP programs by giving all willing and academically prepared students the opportunity to participate in AP. We encourage the elimination of barriers that restrict access to AP for students from ethnic, racial, and socioeconomic groups that have been traditionally underserved. Schools should make every effort to ensure their AP classes reflect the diversity of their student population. The College Board also believes that all students should have access to academically challenging course work before they enroll in AP classes, which can prepare them for AP success. -
Key Relationships in Music
LearnMusicTheory.net 3.3 Types of Key Relationships The following five types of key relationships are in order from closest relation to weakest relation. 1. Enharmonic Keys Enharmonic keys are spelled differently but sound the same, just like enharmonic notes. = C# major Db major 2. Parallel Keys Parallel keys share a tonic, but have different key signatures. One will be minor and one major. D minor is the parallel minor of D major. D major D minor 3. Relative Keys Relative keys share a key signature, but have different tonics. One will be minor and one major. Remember: Relatives "look alike" at a family reunion, and relative keys "look alike" in their signatures! E minor is the relative minor of G major. G major E minor 4. Closely-related Keys Any key will have 5 closely-related keys. A closely-related key is a key that differs from a given key by at most one sharp or flat. There are two easy ways to find closely related keys, as shown below. Given key: D major, 2 #s One less sharp: One more sharp: METHOD 1: Same key sig: Add and subtract one sharp/flat, and take the relative keys (minor/major) G major E minor B minor A major F# minor (also relative OR to D major) METHOD 2: Take all the major and minor triads in the given key (only) D major E minor F minor G major A major B minor X as tonic chords # (C# diminished for other keys. is not a key!) 5. Foreign Keys (or Distantly-related Keys) A foreign key is any key that is not enharmonic, parallel, relative, or closely-related. -
Harmonic Resources in 1980S Hard Rock and Heavy Metal Music
HARMONIC RESOURCES IN 1980S HARD ROCK AND HEAVY METAL MUSIC A thesis submitted to the College of the Arts of Kent State University in partial fulfillment of the requirements for the degree of Master of Arts in Music Theory by Erin M. Vaughn December, 2015 Thesis written by Erin M. Vaughn B.M., The University of Akron, 2003 M.A., Kent State University, 2015 Approved by ____________________________________________ Richard O. Devore, Thesis Advisor ____________________________________________ Ralph Lorenz, Director, School of Music _____________________________________________ John R. Crawford-Spinelli, Dean, College of the Arts ii Table of Contents LIST OF FIGURES ............................................................................................................................... v CHAPTER I........................................................................................................................................ 1 INTRODUCTION ........................................................................................................................... 1 GOALS AND METHODS ................................................................................................................ 3 REVIEW OF RELATED LITERATURE............................................................................................... 5 CHAPTER II..................................................................................................................................... 36 ANALYSIS OF “MASTER OF PUPPETS” ...................................................................................... -
Music Theory Through the Lens of Film
Journal of Film Music 5.1-2 (2012) 177-196 ISSN (print) 1087-7142 doi:10.1558/jfm.v5i1-2.177 ISSN (online) 1758-860X ARTICLE Music Theory through the Lens of Film FranK LEhman Tufts University [email protected] Abstract: The encounter of a musical repertoire with a theoretical system benefits the latter even as it serves the former. A robustly applied theoretic apparatus hones our appreciation of a given corpus, especially one such as film music, for which comparatively little analytical attention has been devoted. Just as true, if less frequently offered as a motivator for analysis, is the way in which the chosen music theoretical system stands to see its underlying assumptions clarified and its practical resources enhanced by such contact. The innate programmaticism and aesthetic immediacy of film music makes it especially suited to enrich a number of theoretical practices. A habit particularly ripe for this exposure is tonal hermeneutics: the process of interpreting music through its harmonic relationships. Interpreting cinema through harmony not only sharpens our understanding of various film music idioms, but considerably refines the critical machinery behind its analysis. The theoretical approach focused on here is transformation theory, a system devised for analysis of art music (particularly from the nineteenth century) but nevertheless eminently suited for film music. By attending to the perceptually salient changes rather than static objects of musical discourse, transformation theory avoids some of the bugbears of conventional tonal hermeneutics for film (such as the tyranny of the “15 second rule”) while remaining exceptionally well calibrated towards musical structure and detail. -
The Devil's Interval by Jerry Tachoir
Sound Enhanced Hear the music example in the Members Only section of the PAS Web site at www.pas.org The Devil’s Interval BY JERRY TACHOIR he natural progression from consonance to dissonance and ii7 chords. In other words, Dm7 to G7 can now be A-flat m7 to resolution helps make music interesting and satisfying. G7, and both can resolve to either a C or a G-flat. Using the TMusic would be extremely bland without the use of disso- other dominant chord, D-flat (with the basic ii7 to V7 of A-flat nance. Imagine a world of parallel thirds and sixths and no dis- m7 to D-flat 7), we can substitute the other relative ii7 chord, sonance/resolution. creating the progression Dm7 to D-flat 7 which, again, can re- The prime interval requiring resolution is the tritone—an solve to either a C or a G-flat. augmented 4th or diminished 5th. Known in the early church Here are all the possibilities (Note: enharmonic spellings as the “Devil’s interval,” tritones were actually prohibited in of- were used to simplify the spelling of some chords—e.g., B in- ficial church music. Imagine Bach’s struggle to take music stead of C-flat): through its normal progression of tonic, subdominant, domi- nant, and back to tonic without the use of this interval. Dm7 G7 C Dm7 G7 Gb The tritone is the characteristic interval of all dominant bw chords, created by the “guide tones,” or the 3rd and 7th. The 4 ˙ ˙ w ˙ ˙ tritone interval can be resolved in two types of contrary motion: &4˙ ˙ w ˙ ˙ bbw one in which both notes move in by half steps, and one in which ˙ ˙ w ˙ ˙ b w both notes move out by half steps.