Non Commercial Use Only

Total Page:16

File Type:pdf, Size:1020Kb

Non Commercial Use Only Italian Journal of Food Safety 2014; volume 3:4521 Application of DNA barcoding oxidase (COI) gene. This gene codes for one part of the terminal enzyme of the mithocondr- Correspondence: Tiziana Civera, Dipartimento di for controlling of the species ial respiratory chain. The COI gene has been Scienze Veterinarie, Università degli Studi di from Octopus genus chosen as a universal molecular target since it Torino, largo Braccini 2, 10095 Grugliasco (TO), allows the design of universal, robust and Italy. Francesco Debenedetti,1 functional primers for almost all the members Tel. +39.011.67092 - Fax: +39.011.6709224. E-mail: [email protected] Alessandra Dalmasso,1 of the animal Phyla (Folmer et al., 1994). The Maria Teresa Bottero,1 effectiveness of this fragment for the identifi- Key words: DNA barcoding, Octopus spp., Maurizio Gilli,2 Stefano Gili,2 cation of species has been demonstrated for Commercial frauds. Valentina Tepedino,3 Tiziana Civera1 several animal species, from vertebrates to invertebrates (Waugh, 2007; Ward and Conflict of interests: the authors declare no 1Dipartimento di Scienze Veterinarie, Holmes, 2007). Recently, this technique was potential conflict of interests. Università degli Studi di Torino, recognised as the best method in forensics for 2 Received for publication: 8 July 2014. Grugliasco (TO); ASLTO1, Torino; species identification, and was proposed by the 3Eurofishmarket, Bologna, Italy Revision received: -. United States Food and Drug Administration Accepted for publication: 15 September 2014. (USFDA) as the methodology for the authenti- cation of commercial fish products (Dawnay et This work is licensed under a Creative Commons al., 2007). The US agency has also the inten- Attribution 3.0 License (by-nc 3.0). Abstract tion of introduce the DNA barcoding data in the Regulatory Fish Encyclopedia (RFE) to sup- ©Copyright F. Debenedetti et al., 2014 Licensee PAGEPress, Italy port the investigations of mislabeling and the The DNA barcoding proposes the use of a Italian Journal of Food Safety 2014; 3:4521 particular sequence from a single genomic substitution of the fish species (Yancy et al., doi:10.4081/ijfs.2014.4521 region as the base for an identifying system 2008). In May 2004, the Consortium for the capable to determine all animal species. This Barcoding of Life (CBOL) was formed, com- methodology comprises the analysis of a 655 prising several international patterns. Since base-pair region from the mithocondrial the beginning, its mission has been the explo- cephalopodsonly and octopus. cytochrome C oxidase gene (COI). Its applica- ration and the development of the potentiality In this study we test the DNA barcoding for tion in the species identification of fishery of the DNA barcoding as a practical research the identification of some octopus species of products has been very promising. However, in tool for species identification. The use of this greatest commercial interest (Octopus mem- the last years some doubts about its usage methodology for species identification ofuse fish- branaceus , Octopus vulgaris, Octopus aegina, have emerged. In this work, we make use of ery products has been very promising from the Octopus cyanea) focusing the attention on the the DNA barcoding for the identification of outset, given the large number of species reliability and completeness of the available some of the octopus species with higher com- already identified. It has been shown that 98 databases. mercial interest (Octopus membranaceus, and 93% of the marine and fresh water Octopus vulgaris, Octopus aegina, Octopus species, respectively, can be differentiated cyanea) focusing the attention on the reliabil- using barcodes (Savolainen et al., 2005; Ward ity and completeness of the available informa- et al., 2009). Materials and Methods tion on the databases. The study looked over 51 This favourable outcome as well as the need individuals apparently belonging to the of a complete and reliable instrument for iden- The sampling involved the collection of 51 Octopus genus. For the identification of O.aegi- tification of the species, have led to the forma- specimens belonging to the genus Octopus: 1 na, O.cyanea, O.vulgaris species no particular tion of the initiative Fish Barcode of Life O.dollfusi, 2 O.aegina, 2 O.cyanea, 24 O.vul- problems were found. On the other hand, most (FISH-BOL)commercial (www.fishbol.org). This cam- garis and 22 O.membranaceus. All samples, col- of the samples of O.membranaceus, though paign, launched in 2005, has as main objective lected in 2012 and 2013 from different suppli- they clearly presented the morphological char- the collection of DNA barcodes of all the fish in ers, were morphologically identified and kept acteristics of the species, were not identified the world, equivalent to 31,000 species approx- at -20°C. The DNA extraction was done using with the biomolecular analyses. imately. It endorses the FishBase (www.fish- the DNeasy Tissue and Blood Kit (Qiagen, Nonbase.org) as the taxonomic authority, and the Valencia, CA, USA) according to the manufac- BOL database (BOLD) as the working bioinfor- turer’s instructions for animal tissue. The matic platform. FISH-BOL represents one of extracted DNA was quantified with NanoDrop Introduction the most complete resources for the species 1000 (Thermo Scientific, Waltham, MA, USA). identification of the fishery products (Ward et For all samples, segments of the COI genes The DNA barcoding puts forward the use of al., 2009). were amplified following the protocol proposed a sequence from a single genomic region However, in the past years, some doubts by Folmer et al. (1994). Since there were no (defined as barcode), as the base of a recogni- regarding the use of DNA barcoding have available reference sequences for O.mem- tion system capable to identify all animal emerged because of the difficulties to discrim- branaceus in FISH-BOL, a second sequencing species (Hebert et al., 2003). This biomolecu- inate recently spread species, or species with a protocol was introduced. It contemplated the lar methodology consists in the identification wide spatial differentiation; as well as the usage of cytochrome b (cytb), a historical tar- of the belonging species through the sequenc- inability to differentiate new and hybrid get used for species identification (Espineira ing of a fragment of mitochondrial genes, its species (Moritz and Cicero, 2004; Hickerson et et al., 2010). alignment and comparison with the informa- al., 2006; Rubinoff, 2006). Furthermore, this Amplicons were visualised by electrophore- tion available on the databases. In particular, technique has been extensively evaluated for sis on a 2% agarose gel and coloured with the barcoding approach comprises the analysis the identification of fish species, still there are Eurosafe Nucleic Acid Stain. The amplified of a 655 bp region located at the 5’ end of the few data supporting the applicability in the products were purified with the enzyme subunit I of the mithocondrial cytochrome C identification of the most common species of ExoSap-IT (USB) and sequence with the [page 196] [Italian Journal of Food Safety 2014; 3:4521] Article BigDye terminator kit (Applied Biosystems, for the COI gene and 651 bp for the cytb gene. lack of reference sequences of O.mem- Carlsbad, CA, USA) according to the manufac- The sequencing results are presented in Table branaceus in both GenBank and BOLD data- turer’s instructions. The extension products 1. For the species O.aegina, O.cyanea, O.vul- bases (Figure 2). were purified using the DyeEx 2.0 spin kit garis and O.dollfusi there were no identifica- (Qiagen), denatured in formamide and tion problems. We were able to identify 27 analysed with the ABI Prism 310 Genetic samples, out of 29, with a similarity of 99- Analyzer (Applied Biosystems). The obtained 100%. Out of these, 22 samples were in accor- Discussion sequences were examined, corrected and dance with the labels of the products, while 5 analysed with the MEGA5 software and sub- did not correspond to what was declared in the The expansion in food preservation, pro- jected to identification with BOLD-IDS for the product description. Finally, for 2 samples cessing technologies and market liberalisation COI gene, and to BLASTN (GenBank) for both labeled as O.vulgaris it was not possible to has contributed significantly to the globalisa- genes. obtain the biomolecular identification, since tion of fish trade, both in terms of species and Finally phylogenetic relationships among they presented a low identity (91%) with products. In a globalised market, the eagerness the studied samples were investigated with Amphioctopus rex and Amphioctopus margina- to offer leading products appreciated and differences method (Nei and Kumar, 2000). tus, species not reported in the FAO catalogue. recognised to derive maximum revenue, can For the distance matrix, phylogenetic trees Further difficulties were encountered in the introduce the habit of replacing valuable were constructed using the Neighbour-Joining identification of samples labelled as O.mem- species with others very similar but economi- method. The bootstrap method (500 replica- branaceus. One sample only was identified cally or qualitatively inferior, thus incurring tes) was used to obtain the support of different from both databases in a non-ambiguous way into commercial fraud (Jacquet and Pauly, groups included in the phylogenetic (100% similarity) as O.aegina, while for the 2008). (Felsenstein, 1985). other 21 samples it was not possible to obtain The identification of species in fisherystock a certain identification. In particular, regard- products, essential at the moment of the com- ing the cytb, the similarity obtained values mercialisation, has been based for a long time ranged from 93-94% with O.membranaceus, on morphological characteristics solely, and it Results 93% with O.aegina and 90% with Cistopus tai- isonly still the official method for taxonomic classi- wanicus (Figure 1). The results were even fication. However, in the last years this mor- All samples originated an amplicon of 655 bp more complex for the COI gene because of the phological classification has been supported by use commercial Non Figure 1.
Recommended publications
  • Phylogenetic Relationships Among Octopodidae Species in Coastal Waters of China Inferred from Two Mitochondrial DNA Gene Sequences Z.M
    Phylogenetic relationships among Octopodidae species in coastal waters of China inferred from two mitochondrial DNA gene sequences Z.M. Lü, W.T. Cui, L.Q. Liu, H.M. Li and C.W. Wu Zhejiang Provincial Key Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, China Corresponding author: Z.M. Lü E-mail: [email protected] Genet. Mol. Res. 12 (3): 3755-3765 (2013) Received January 21, 2013 Accepted August 20, 2013 Published September 19, 2013 DOI http://dx.doi.org/10.4238/2013.September.19.7 ABSTRACT. Octopus in the family Octopodidae (Mollusca: Cephalopoda) has been generally recognized as a “catch-all” genus. The monophyly of octopus species in China’s coastal waters has not yet been studied. In this paper, we inferred the phylogeny of 11 octopus species (family Octopodidae) in China’s coastal waters using nucleotide sequences of two mitochondrial DNA genes: cytochrome c oxidase subunit I (COI) and 16S rRNA. Sequence analysis of both genes revealed that the 11 species of Octopodidae fell into four distinct groups, which were genetically distant from one another and exhibited identical phylogenetic resolution. The phylogenies indicated strongly that the genus Octopus in China’s coastal waters is also not monophyletic, and it is therefore clear that the Octopodidae systematics in this area requires major revision. It is demonstrated that partial sequence information of both the mitochondrial genes 16S rRNA and COI could be used as diagnostic molecular markers in the identification and resolution of the taxonomic ambiguity of Octopodidae species. Key words: Molecular phylogeny; Mitochondrial DNA gene sequences; Octopodidae species; COI; 16S rRNA Genetics and Molecular Research 12 (3): 3755-3765 (2013) ©FUNPEC-RP www.funpecrp.com.br Z.M.
    [Show full text]
  • The Occurrence of Cistopus Taiwanicus in Sri Lankan Waters
    Proceedings of the National Aquatic Resources Research and Development Agency (NARA), Scientific Sessions 2016 The occurrence of Cistopus taiwanicus in Sri Lankan waters D.R. Herath*, D.N.A. Ranmadugala and A.A.D.G.U. Amarakoon Marine Biological Resources Division, National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 15, Sri Lanka Abstract Cephalopods include a diverse collection of more than 650 species of octopus, cuttlefish, squid and nautilus. Several of these species are commercially important in Sri Lanka. As morphological identification is sometimes difficult, molecular techniques were used to confirm the species of cuttlefish, squid and octopus species found in Sri Lankan waters. Cephalopod samples were collected from Chilaw, Negombo, Beruwela and Kalpitiya. The miotochondrial COI region was amplified and sequenced. The sequences were matched with universal databases to identify each species. The cuttlefish species Sepia aculeata, Sepiella inermis, Sepia pharaonis and Sepioteuthis lessoniana, the squid species,' Loligo singhalensis and Loligo (Uroteuthis) duvacelli were identified by this barcoding technique. Two species of octopus,Cistopus taiwanicusaad Octopus vulgaris were also identified. A significant finding in this study was that two separate octopus specimens collected from Negombo and Kalpitiya were identified as Cistopus taiwanicus. Four species of Cistopus, namely, C indicus, C. chinensis, C. taiwanicus and C. platinoidus have been recorded in the world. Out of these four species, only C. indicus has been reported from Sri Lanka. Therefore, the species list for Cephalopod species precent in Sri Lanka could be updated to include the species Cistopus taiwanicus. Further research is needed to confirm whether C. indicus and C.
    [Show full text]
  • Along the Saudi Arabian Red Sea Coastline Thesis by Gordon Byron
    Phylogenetic Diversity of Cephalopoda (Animalia:Mollusca) Along the Saudi Arabian Red Sea Coastline Thesis by Gordon Byron In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia © December, 2016 Gordon Byron All rights reserved 2 EXAMINATION COMMITTEE PAGE The thesis of Gordon Byron is approved by the examination committee. Committee Chairperson: Michael Berumen Committee Co-Chair: Christian Voolstra Committee Member: Timothy Ravasi 3 ABSTRACT Phylogenetic Diversity of Cephalopoda (Animalia:Mollusca) Along the Saudi Red Sea Coastline Gordon Byron Although the Red Sea presents a unique environment with high temperature and salinity, it remains an area that is understudied. This lack of information is reflected in many areas, one which is biodiversity. Despite increasing work on biodiversity throughout the Red Sea and an increase in Cephalopoda studies, Cephalopoda in the Red Sea remain underrepresented, which is especially pronounced in molecular analyses. Members of the class Cephalopoda are considered to be major contributors to coral reef ecosystems, serving as part of the food chain and exhibiting population increases due to targeted teleost fisheries and global climate change. In order to assess the biodiversity of Cephalopoda in the Saudi Arabian Red Sea, 87 specimens were collected from 25 reef locations between 17°N and 28°N latitude, as well as from the largest fish market in the Kingdom of Saudi Arabia. Taxonomic identification of specimens was determined using morphological comparisons with previously reported species in the Red Sea and the molecular barcoding region Cytochrome Oxidase I. 84 Red Sea sequences were compared with sequences from GenBank and analyzed using a complement of Neighbor- Joining, Maximum-Likelihood, and Bayesian inference trees.
    [Show full text]
  • C M F R I Annual R Eport 2012-13
    ISSN 0972-2378 CMFRI Annual Report 2012-13 Regional Centre - MANDAPAM Research Centre - MUMBAI Research Centre - CALICUT Marine Fisheries PO 2nd Floor, CIFE (Old campus) West Hill PO, Calicut 673005 Mandapam Camp 623520 Fisheries University Road, Tel: 0495-2382033, 2382011, 0495-2382011 Tel: 04573 241433, 241456 Versova, Mumbai - 400 061, Maharashtra Email : [email protected] Fax: 04573 241502 Tel : 022 - 26392975/26393029 E-mail : [email protected] E-mail: [email protected] Fax : 022-26320824 Research Centre - VIZHINJAM Email: [email protected] P.B. No. 9, Vizhinjam PO, Thiruvananthapuram 695521, Kerala Regional Centre - Visakhapatnam Research Centre - KARWAR Tel: 0471-2480224, Fax: 0471-2480324 PB No.5, Karwar581301 E-mail : [email protected] Pandurangapuram, Ocean View Layout, North Kanara, Karnataka Visakhapatnam 530003, Andhra Pradesh Research Centre - TUTICORIN Tel : 08382-222639 South Beach Road (Near Roche Park) Tel : 0891 2543797, 2543793 Fax:08382-221371 Tuticorin 628001, Tamil Nadu Fax:0891-2500385 E-mail : [email protected] Tel: 0461-2320274, 2320102 E-mail: [email protected] Fax: 0461-2322274 Research Centre - MANGALORE E-mail : [email protected] Technology Wing Campus of Research Centre - CHENNAI College of Fisheries, Regional Centre - VERAVAL 75, Santhome High Road, P.B.No. 244, Hoige Bazar Raja Annamalaipuram, Matsya Bhavan, Bhidia Mangalore-575 001, Chennai 600028, Tamil Nadu Veraval 362269, Gujarat Dakshina Kannada, Karnataka Tel: 044-24617264/24617317 Tel : 02876-232649, Fax : 02876-231865 Tel: 0824 2424152, Fax : 0824 2424061 Fax: 044-24617290 Email : [email protected] E-mail : [email protected] E-mail : [email protected] Annual Report 2012-13 Central Marine Fisheries Research Institute (Indian Council of Agricultural Research) Post Box No.
    [Show full text]
  • Western Central Pacific
    FAOSPECIESIDENTIFICATIONGUIDEFOR FISHERYPURPOSES ISSN1020-6868 THELIVINGMARINERESOURCES OF THE WESTERNCENTRAL PACIFIC Volume2.Cephalopods,crustaceans,holothuriansandsharks FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES THE LIVING MARINE RESOURCES OF THE WESTERN CENTRAL PACIFIC VOLUME 2 Cephalopods, crustaceans, holothurians and sharks edited by Kent E. Carpenter Department of Biological Sciences Old Dominion University Norfolk, Virginia, USA and Volker H. Niem Marine Resources Service Species Identification and Data Programme FAO Fisheries Department with the support of the South Pacific Forum Fisheries Agency (FFA) and the Norwegian Agency for International Development (NORAD) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1998 ii The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. M-40 ISBN 92-5-104051-6 All rights reserved. No part of this publication may be reproduced by any means without the prior written permission of the copyright owner. Applications for such permissions, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, via delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1998 iii Carpenter, K.E.; Niem, V.H. (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 2. Cephalopods, crustaceans, holothuri- ans and sharks. Rome, FAO. 1998. 687-1396 p.
    [Show full text]
  • Dear Authors. Please See Below for Specific Edits Allowed on This Document (So That We Can Keep Track of Changes / Updates): 1
    _______________________________________________________ Dear authors. Please see below for specific edits allowed on this document (so that we can keep track of changes / updates): 1. Affiliations (Suggesting mode) 2. Comments only on sections 1-6, 8-14 (unless it is your groups’ section, in which case edits using Suggesting mode allowed) 3. Edits and contributions can be made by anyone, using Suggesting mode, to sections 7, 15-18. NB! Suggesting mode- see fig below: pencil icon at top right of toolbar must be selected as Suggesting (not Editing). ___________________________________________________________ WORLD OCTOPUS FISHERIES Warwick H. Sauer[1], Zöe Doubleday[2], Nicola Downey-Breedt[3], Graham Gillespie[4], Ian G. Comentario [1]: Note: Authors Gleadall[5], Manuel Haimovici[6], Christian M. Ibáñez[7], Stephen Leporati[8], Marek Lipinski[9], Unai currently set up as: W. Sauer Markaida[10], Jorge E. Ramos[11], Rui Rosa[12], Roger Villanueva[13], Juan Arguelles[14], Felipe A. (major lead), followed by section leads in alphabetical order, Briceño[15], Sergio A. Carrasco[16], Leo J. Che[17], Chih-Shin Chen[18], Rosario Cisneros[19], Elizabeth followed by section contributors in Conners[20], Augusto C. Crespi-Abril[21], Evgenyi N. Drobyazin[22], Timothy Emery[23], Fernando A. alphabetical order. Fernández-Álvarez[24], Hidetaka Furuya[25], Leo W. González[26], Charlie Gough[27], Oleg N. Katugin[28], P. Krishnan[29], Vladimir V. Kulik[30], Biju Kumar[31], Chung-Cheng Lu[32], Kolliyil S. Mohamed[33], Jaruwat Nabhitabhata[34], Kyosei Noro[35], Jinda Petchkamnerd[36], Delta Putra[37], Steve Rocliffe[38], K.K. Sajikumar[39], Geetha Hideo Sakaguchi[40], Deepak Samuel[41], Geetha Sasikumar[42], Toshifumi Wada[43], Zheng Xiaodong[44], Anyanee Yamrungrueng[45].
    [Show full text]
  • Recent Cephalopoda Primary Types
    Ver. 2 March 2017 RECENT CEPHALOPOD PRIMARY TYPE SPECIMENS: A SEARCHING TOOL Compiled by Michael J. Sweeney Introduction. This document was first initiated for my personal use as a means to easily find data associated with the ever growing number of Recent cephalopod primary types. (Secondary types (paratypes, etc) are not included due to the large number of specimens involved.) With the excellent resources of the National Museum of Natural History, Smithsonian Institution and the help of many colleagues, it grew in size and became a resource to share with others. Along the way, several papers were published that addressed some of the problems that were impeding research in cephalopod taxonomy. A common theme in each paper was the need to locate and examine types when publishing taxonomic descriptions; see Voss (1977:575), Okutani (2005:46), Norman and Hochberg (2005b:147). These publications gave me the impetus to revive the project and make it readily available. I would like to thank the many individuals who assisted me with their time and knowledge, especially Clyde Roper, Mike Vecchione, Eric Hochberg and Mandy Reid. Purpose. This document should be used as an aid for finding the location of types, type names, data, and their publication citation. It is not to be used as an authority in itself or to be cited as such. The lists below will change over time as more research is published and ambiguous names are resolved. It is only a search aid and data from this document should be independently verified prior to publication. My hope is that this document will make research easier and faster for the user.
    [Show full text]
  • HOPE and SECURITY Through S&T
    PCAARRD 20 ANNUAL 20 REPORT Bringing HOPE AND SECURITY Through S&T DEPARTMENT OF SCIENCE AND TECHNOLOGY (DOST) PHILIPPINE COUNCIL FOR AGRICULTURE, AQUATIC AND NATURAL RESOURCES RESEARCH AND DEVELOPMENT (PCAARRD) About DOST-PCAARRD The Philippine Council for higher education institutions involved regional, and national organizations Agriculture, Aquatic and Natural in crops, livestock, forestry, fisheries, and funding institutions for joint R&D, Resources Research and Development soil and water, mineral resources, human resource development and (PCAARRD) is one of the sectoral and socio-economic research and training, technical assistance, and councils under the Department of development (R&D). In 1987, the exchange of scientists, information, Science and Technology (DOST). It Council was renamed the Philippine and technologies. The Council is was formed through the consolidation Council for Agriculture, Forestry implementing its program primarily of the Philippine Council for and Natural Resources Research through its regional consortia, which Agriculture, Forestry and Natural and Development but retained the are located all over the country. Resources Research and Development acronym PCARRD. On January 30 of It also supports the National (PCARRD) and the Philippine Council the same year, the Philippine Council Agriculture, Aquatic and Natural for Aquatic and Marine Research and for Aquatic and Marine Research and Resources Research and Development Development (PCAMRD) on June 22, Development (PCAMRD) was created Network (NAARRDN) composed of 2011 pursuant to Executive Order from the Fisheries Research Division national multi- and single-commodity No. 366. of PCARRD with functions focused on and regional R&D centers, cooperating Originally established in November aquatic and marine sectors. stations, and specialized agencies.
    [Show full text]
  • United States National Museum Bulletin 234
    i's {(mi lw|f SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM BULLETIN 234 WASHINGTON, D.C. 1963 M USEUM OF NATURAL HIS t]o R Y Cephalopods of the Philippine Islands GILBERT L. VOSS SMITHSONIAN INSTITUTION WASHINGTON, 1963 Publications of the United States National Museum The scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monogi-aphs dealing with the collections and work of the Museum and setting forth newly acquired facts in the fields of Anthropology, Biology, Geology, History, and Technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the different subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902 papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Eerbarium. This work forms number 234 of the Bulletin series. Frank A. Tayloe, Director, United States National Museum. /^HSO,^ U.S* GOVERNMENT PRINTING OFFICE WASHINGTON i 1963 For sale by the Superintendent of Documents, U.S.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-205 Poster Presentations…………………………………………………………………………………207-270 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • Seafood Watch Seafood Report
    Seafood Watch Seafood Report Tako (Madako) Common Octopus Octopus vulgaris (Image © Scandinavian Fishing Yearbook/www.scandfish.com) Final Report August 20, 2008 Casson Trenor Independent Consultant & Stephanie Danner Fisheries Research Analyst MBA_SeafoodWatch_Tako(Octopus)_FinalReport August 20, 2008 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices”, “Good Alternatives” or “Avoid”. The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. Seafood Watch® Research Analysts also communicate regularly with ecologists, fisheries and aquaculture scientists, and members of industry and conservation organizations when evaluating fisheries and aquaculture practices.
    [Show full text]
  • Sem Título-1
    Cephalopod International Advisory Council Symposium 27 Oct - 02 Nov 2012 Majestic Palace Hotel | Florianópolis, SC, Brazil Official Program Cephalopod International Advisory Council Symposium “Interdisciplinary approaches to cephalopod biology” Official Program 27 Oct - 02 Nov 2012 Majestic Palace Hotel Florianópolis, Santa Catarina, Brazil Cover Photograph: Pickfordiateuthis pulchella, by Dr. Alvaro Migotto, Marine Biology Center (CEBIMar-USP), University of São Paulo, São Sebastião/SP, Brazil - www.usp.br/cbm Cephalopod International Advisory Council Symposium 2012 27 Oct - 02 Nov 2012 | Majestic Palace Hotel | Florianópolis, Santa Catarina, Brazil Conference Host Sponsors Symposium Secretariat Offi cial Travel Agency Table of Contents Welcome Message___________________________________ 4 Committees_________________________________________ 6 General Information__________________________________ 8 Social Events_______________________________________ 11 Useful Information__________________________________ 12 Submission of Manuscripts___________________________ 13 Map of Symposium Venue Area_______________________ 14 Hotels & Restaurants________________________________ 16 Pre-conference Workshops___________________________ 18 Invited Speakers____________________________________ 22 CIAC ‘12 Program___________________________________ 27 Monday 29th october 2012_______________28 Tuesday 30th october 2012______________31 Thursday 1st november 2012_____________34 Friday 2nd november 2012_______________38 CIAC ‘12 Posters____________________________________
    [Show full text]