Abstract Volume

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Volume ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-205 Poster Presentations…………………………………………………………………………………207-270 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. The different cysteine pattern of mature A contoxins in Indo-Pacific versus Atlantic cones suggest that piscivory in the cones from both oceans evolved through convergence. In addition, we are studying the evolution of conotoxin venoms in the radiations of vermivorous cones endemic to Senegal and Cabo Verde. 4 Setting The Foundations and Developing Tools for Studying the Regeneration of Complex Eyes in the Emerging Research Organism, Pomacea canaliculata (Gastropoda, Ampullariidae) Alice Accorsi*1, Eric Ross1, Melainia McClain2, Timothy Corbin2, and Alejandro Sánchez Alvarado1 1Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO, USA 2Stowers Institute for Medical Research, Kansas City, MO, USA The freshwater snail Pomacea canaliculata is an emerging research organism in the field of developmental and regeneration biology. This mollusk has a direct embryonic development and possesses complex camera-type eyes, composed of a cornea, lens, retina and optic neuron, which can fully regenerate upon amputation. The adult P. canaliculata eye, therefore provides a unique opportunity to understand how a sensory organ is regenerated and functionally integrated with pre-existing adult tissues and to compare it to embryonic eye development. To introduce and develop the necessary molecular, cellular and genetic tools to mechanistically dissect the regeneration of a complex organ that is irreplaceable in all current model organisms, we have developed methods to keep this organism in captivity, to efficiently collect embryos at any developmental stage and culture them ex ovo to facilitate manipulations and live imaging. At present, genomic manipulations of embryos still require optimization, but we found that they can be successfully microinjected with exogenous mRNA. At the same time, we have also generated extensive embryonic development and regeneration transcriptomes and optimized in situ hybridization protocols to validate these molecular databases, to find markers for the various cell types present in the P. canaliculata eyes and to localize the expression of molecules driving the regeneration process. Altogether, these data represent the first few steps towards transforming P. canaliculata into a genetically tractable research organism for the study of animal regeneration that may eventually be adopted by others to study aspects of animal biology not readily accessible in current model systems. 5 Influence of Vitamin E on Shell Repair, Haemolymph Biochemical Parameters, Haemagglutination Potential and Ovo-tesist Activity of Giant African Land Snail (Archachatina marginata) After Shell Damage John Adesanya Abiona*1, Abiola Blessing Okunlola1, Nneka Sandra Obanya1, and Muhammed Okanlawon Onagbesan1 1P.M.B 2240, Alabata Road, Abeokuta. Department of Animal Physiology, Federal University of Agriclture, Abeokuta A study was conducted on the effect of Vitamin A on shell repair, haemolymph biochemical parameters, haemagglutination potential and ovo-tesist activity after shell damage. Forty (40) snails weighing between 150-200 g were randomly divided into four (4) treatments (with ten (10) replicate per treatment). At the commencement of the experiment, shells were damaged (length 3.5 cm and breadth 1.5 cm). The four treatments used in this study were: T1 (1g of vitamin A/kg of concentrate), T2, (2.5g of vitamin A/kg of concentrate) T3 (5g of vitamin A/kg of concentrate) and T4 (0g of vitamin A control). Parameters monitored were new shell growth, haemolymph biochemical parameter (Total protein, albumin, globulin and albumin globulin ratio), haemagglutination titre and ovo-testity activity. Result showed that rate of shell regrowth was not significantly different (P>0.05) between the control and those administered with various levels of Vitamin A after shell damage. Similarly, total protein, albumin, globulin and albumin-globulin ratio were not significantly affected by Vitamin A inclusion into the diet of snails. However, inclusion of Vitamin A into snail diet significantly (P<0.001) increased haemagglutination titre better than the control. Also, both Oogenic and spermatogenic activities were also positively influenced well than the control. However, the highest levels of activity were recorded at inclusion level of 5 and 2.5 g/kg of concentrate given. It can be concluded from this study that Vitamin A aid in the shell repair process, improve both immune status and reproductive function during period of shell injury in Giant African Land snail (A. marginata). 6 The Vanishing Mediterranean and the Assembly of A Novel Molluscan Fauna in the Levantine Basin Paolo G. Albano*1 1University of Vienna, Department of Palaeontology The Levantine basin in the easternmost Mediterranean Sea is well known for hosting hundreds of non-indigenous species introduced after the opening of the Suez Canal in 1869. An insufficiently recognized but even more dramatic phenomenon is the disappearance of native species. We here quantify this demise based on samples collected on intertidal and subtidal soft and hard substrates along the Israeli coast. We sampled during two seasons to capture any intra-annual variability and deployed a diverse array of techniques including grabbing, airlift sampling, scraping and handpicking. We used a fine sieve (0.5 mm) to retain small sized and juvenile individuals, deployed an intense identification effort including tracing the morphology of early ontogenetic stages, and considered the empty shells to reconstruct the baseline. The rocky intertidal was dominated by native species (61% and 73% in terms of richness and abundance, respectively) with limited seasonal variation and high spatial heterogeneity. The soft-substrate subtidal (10-40 m depth) showed a marked depth gradient, with assemblages down to 20 m with only 15-19% of native abundance which increased to 73-82% in deeper water, and a strong seasonality with spring dominated by native and autumn by non-indigenous species. Native species richness was below 50% year-around. The preliminary results for the rocky subtidal (10-25 m depth) suggest a similar pattern. Moreover, entire taxa such as Neogastropoda have become very rare (on rocky substrates they were just 4% of the diversity vs 18% in the death assemblage) while ectoparasites such as Pyramidellidae were 28% vs 16%, pointing at a complete reassembly of the local fauna. 7 Limited Growth and Hindered Reproduction Cause the Demise of Native Mollusks on the Israeli Mediterranean Shallow Shelf Paolo G. Albano*1, Jan Steger1, Zara Guifarro1, Bella S. Galil2, and Martin Zuschin1 1University of Vienna, Department of Palaeontology 2The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies We here inspect the causes of the decline of native mollusks on the Israeli Mediterranean soft- substrate shallow shelf based on sampling along two transects off northern and southern Israel in autumn 2016 and spring 2017. We compared the living assemblages with a comprehensive literature-based checklist of Israeli mollusks filtered by appropriate substrate and depth, and the composition of the death assemblage collected with the living organisms. Our sampling intercepted only 24% of the historically recorded species. At individual sites, the living assemblage native richness is between 2.9% and 18.5% of the death assemblage native richness. The abundance of native species peaks in spring (80%, 934 individuals) but drops in autumn to only 15% (279 individuals, notwithstanding two additional replicates were collected) suggesting a mass mortality during summer. Abundant native species like Abra alba
Recommended publications
  • Some Aspects of the Biology of Three Northwestern Atlantic Chitons
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1978 SOME ASPECTS OF THE BIOLOGY OF THREE NORTHWESTERN ATLANTIC CHITONS: TONICELLA RUBRA, TONICELLA MARMOREA, AND ISCHNOCHITON ALBUS (MOLLUSCA: POLYPLACOPHORA) PAUL DAVID LANGER University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LANGER, PAUL DAVID, "SOME ASPECTS OF THE BIOLOGY OF THREE NORTHWESTERN ATLANTIC CHITONS: TONICELLA RUBRA, TONICELLA MARMOREA, AND ISCHNOCHITON ALBUS (MOLLUSCA: POLYPLACOPHORA)" (1978). Doctoral Dissertations. 2329. https://scholars.unh.edu/dissertation/2329 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Description of Two New Ecuadorian Zilchistrophia Weyrauch 1960
    A peer-reviewed open-access journal ZooKeys 453: 1–17 (2014)Description of two new Ecuadorian Zilchistrophia Weyrauch 1960... 1 doi: 10.3897/zookeys.453.8605 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Description of two new Ecuadorian Zilchistrophia Weyrauch, 1960, with the clarification of the systematic position of the genus based on anatomical data (Gastropoda, Stylommatophora, Scolodontidae) Barna Páll-Gergely1, Takahiro Asami1 1 Department of Biology, Shinshu University, Matsumoto 390-8621, Japan Corresponding author: Barna Páll-Gergely ([email protected]) Academic editor: M. Haase | Received 17 September 2014 | Accepted 14 October 2014 | Published 10 November 2014 http://zoobank.org/741A5972-D4B3-46E9-A5CA-8F38A2E90B5B Citation: Páll-Gergely B, Asami T (2014) Description of two new Ecuadorian Zilchistrophia Weyrauch, 1960, with the clarification of the systematic position of the genus based on anatomical data (Gastropoda, Stylommatophora, Scolodontidae). ZooKeys 453: 1–17. doi: 10.3897/zookeys.453.8605 Abstract Two new species of the genus Zilchistrophia Weyrauch, 1960 are described from Eastern Ecuadorian rain forest: Zilchistrophia hilaryae sp. n. and Z. shiwiarorum sp. n. These two new species extend the distribu- tion of the genus considerably northwards, because congeners have been reported from Peru only. For the first time we present anatomical data (radula, buccal mass, morphology of the foot and the genital struc- ture) of Zilchistrophia species. According to these, the genus belongs to the family Scolodontidae, sub- family Scolodontinae (=“Systrophiini”). The previously assumed systematic relationship of Zilchistrophia with the Asian Corillidae and Plectopylidae based on the similarly looking palatal plicae is not supported. Keywords Systrophiidae, Plectopylidae, Plectopylis, Corillidae, anatomy, taxonomy Copyright Barna Páll-Gergely, Takahiro Asami.
    [Show full text]
  • Phylogenetic Relationships Among Octopodidae Species in Coastal Waters of China Inferred from Two Mitochondrial DNA Gene Sequences Z.M
    Phylogenetic relationships among Octopodidae species in coastal waters of China inferred from two mitochondrial DNA gene sequences Z.M. Lü, W.T. Cui, L.Q. Liu, H.M. Li and C.W. Wu Zhejiang Provincial Key Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, China Corresponding author: Z.M. Lü E-mail: [email protected] Genet. Mol. Res. 12 (3): 3755-3765 (2013) Received January 21, 2013 Accepted August 20, 2013 Published September 19, 2013 DOI http://dx.doi.org/10.4238/2013.September.19.7 ABSTRACT. Octopus in the family Octopodidae (Mollusca: Cephalopoda) has been generally recognized as a “catch-all” genus. The monophyly of octopus species in China’s coastal waters has not yet been studied. In this paper, we inferred the phylogeny of 11 octopus species (family Octopodidae) in China’s coastal waters using nucleotide sequences of two mitochondrial DNA genes: cytochrome c oxidase subunit I (COI) and 16S rRNA. Sequence analysis of both genes revealed that the 11 species of Octopodidae fell into four distinct groups, which were genetically distant from one another and exhibited identical phylogenetic resolution. The phylogenies indicated strongly that the genus Octopus in China’s coastal waters is also not monophyletic, and it is therefore clear that the Octopodidae systematics in this area requires major revision. It is demonstrated that partial sequence information of both the mitochondrial genes 16S rRNA and COI could be used as diagnostic molecular markers in the identification and resolution of the taxonomic ambiguity of Octopodidae species. Key words: Molecular phylogeny; Mitochondrial DNA gene sequences; Octopodidae species; COI; 16S rRNA Genetics and Molecular Research 12 (3): 3755-3765 (2013) ©FUNPEC-RP www.funpecrp.com.br Z.M.
    [Show full text]
  • The Occurrence of Cistopus Taiwanicus in Sri Lankan Waters
    Proceedings of the National Aquatic Resources Research and Development Agency (NARA), Scientific Sessions 2016 The occurrence of Cistopus taiwanicus in Sri Lankan waters D.R. Herath*, D.N.A. Ranmadugala and A.A.D.G.U. Amarakoon Marine Biological Resources Division, National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 15, Sri Lanka Abstract Cephalopods include a diverse collection of more than 650 species of octopus, cuttlefish, squid and nautilus. Several of these species are commercially important in Sri Lanka. As morphological identification is sometimes difficult, molecular techniques were used to confirm the species of cuttlefish, squid and octopus species found in Sri Lankan waters. Cephalopod samples were collected from Chilaw, Negombo, Beruwela and Kalpitiya. The miotochondrial COI region was amplified and sequenced. The sequences were matched with universal databases to identify each species. The cuttlefish species Sepia aculeata, Sepiella inermis, Sepia pharaonis and Sepioteuthis lessoniana, the squid species,' Loligo singhalensis and Loligo (Uroteuthis) duvacelli were identified by this barcoding technique. Two species of octopus,Cistopus taiwanicusaad Octopus vulgaris were also identified. A significant finding in this study was that two separate octopus specimens collected from Negombo and Kalpitiya were identified as Cistopus taiwanicus. Four species of Cistopus, namely, C indicus, C. chinensis, C. taiwanicus and C. platinoidus have been recorded in the world. Out of these four species, only C. indicus has been reported from Sri Lanka. Therefore, the species list for Cephalopod species precent in Sri Lanka could be updated to include the species Cistopus taiwanicus. Further research is needed to confirm whether C. indicus and C.
    [Show full text]
  • Molluscs of the Dürrenstein Wilderness Area
    Molluscs of the Dürrenstein Wilderness Area S a b i n e F ISCHER & M i c h a e l D UDA Abstract: Research in the Dürrenstein Wilderness Area (DWA) in the southwest of Lower Austria is mainly concerned with the inventory of flora, fauna and habitats, interdisciplinary monitoring and studies on ecological disturbances and process dynamics. During a four-year qualitative study of non-marine molluscs, 96 sites within the DWA and nearby nature reserves were sampled in cooperation with the “Alpine Land Snails Working Group” located at the Natural History Museum of Vienna. Altogether, 84 taxa were recorded (72 land snails, 12 water snails and mussels) including four endemics and seven species listed in the Austrian Red List of Molluscs. A reference collection (empty shells) of molluscs, which is stored at the DWA administration, was created. This project was the first systematic survey of mollusc fauna in the DWA. Further sampling might provide additional information in the future, particularly for Hydrobiidae in springs and caves, where detailed analyses (e.g. anatomical and genetic) are needed. Key words: Wilderness Dürrenstein, Primeval forest, Benign neglect, Non-intervention management, Mollusca, Snails, Alpine endemics. Introduction manifold species living in the wilderness area – many of them “refugees”, whose natural habitats have almost In concordance with the IUCN guidelines, research is disappeared in today’s over-cultivated landscape. mandatory for category I wilderness areas. However, it may not disturb the natural habitats and communities of the nature reserve. Research in the Dürrenstein The Dürrenstein Wilderness Area Wilderness Area (DWA) focuses on providing invento- (DWA) ries of flora and fauna, on interdisciplinary monitoring The Dürrenstein Wilderness Area (DWA) was as well as on ecological disturbances and process dynamics.
    [Show full text]
  • Gastropoda, Pleuroceridae), with Implications for Pleurocerid Conservation
    Zoosyst. Evol. 93 (2) 2017, 437–449 | DOI 10.3897/zse.93.14856 museum für naturkunde Genetic structuring in the Pyramid Elimia, Elimia potosiensis (Gastropoda, Pleuroceridae), with implications for pleurocerid conservation Russell L. Minton1, Bethany L. McGregor2, David M. Hayes3, Christopher Paight4, Kentaro Inoue5 1 Department of Biological and Environmental Sciences, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, Houston, Texas 77058 USA 2 Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th Street SE, Vero Beach, Florida 32962 USA 3 Department of Biological Sciences, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, Kentucky 40475 USA 4 Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, Rhode Island 02881 USA 5 Texas A&M Natural Resources Institute, 578 John Kimbrough Boulevard, 2260 TAMU, College Station, Texas 77843 USA http://zoobank.org/E6997CB6-F054-4563-8C57-6C0926855053 Corresponding author: Russell L. Minton ([email protected]) Abstract Received 7 July 2017 The Interior Highlands, in southern North America, possesses a distinct fauna with nu- Accepted 19 September 2017 merous endemic species. Many freshwater taxa from this area exhibit genetic structuring Published 15 November 2017 consistent with biogeography, but this notion has not been explored in freshwater snails. Using mitochondrial 16S DNA sequences and ISSRs, we aimed to examine genetic struc- Academic editor: turing in the Pyramid Elimia, Elimia potosiensis, at various geographic scales. On a broad Matthias Glaubrecht scale, maximum likelihood and network analyses of 16S data revealed a high diversity of mitotypes lacking biogeographic patterns across the range of E.
    [Show full text]
  • The Malacological Society of London
    ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45
    [Show full text]
  • Sepiola Trirostrata Voss, 1962 Fig
    Cephalopods of the World 169 Sepiola trirostrata Voss, 1962 Fig. 245 Sepiola trirostrata Voss, 1962a, Proceedings of the Biological Society of Washington, 75: 172 [type locality: Philippines]. Frequent Synonyms: None. Misidentifications: None. FAO Names: En – Knobby bobtail squid; Fr – Sépiole bosselée; Sp – Sepiola nudosa. tentacle II left hectocotylus III left I right I left IV left male arm arrangement (after Voss, 1963) dorsal view of male Fig. 245 Sepiola trirostrata Diagnostic Features: Fins short, do not exceed length of mantle anteriorly or posteriorly. Arms III in both sexes stout and strongly curved inward, more obviously so in males. Suckers in ventral series of right arm I and arms II of males larger than dorsal suckers. Hectocotylus present, left dorsal arm modified: proximal end with 2 slender fleshy papillae (anteriormost papilla longest) and dorsolateral to these a blunt tongue-like lobe, all formed from enlarged and elongate sucker pedicels; 2 rows of suckers on arm proximal to fleshy pad; distal end of hectocotylized arm with sucker pedicels enlarged and tightly packed to form 2 double rows of columnar structures; suckers reduced with tiny, fleshy, slit-like openings. Club with 4 large suckers in transverse rows; suckers differ in size; dorsal marginal longitudinal series of suckers larger than those in ventral marginal series. Paired kidney-shaped light organs present inside mantle cavity on each side of ink sac. Colour: Mantle and head with many minute brown or black chromatophores; arms III deep pink, arms I to III each with single longitudinal row of large chromatophores, arms IV with double row of small chromatophores.
    [Show full text]
  • Symbionts and Diseases Associated with Invasive Apple Snails
    Symbionts and diseases associated with invasive apple snails Cristina Damborenea, Francisco Brusa and Lisandro Negrete CONICET, División Zoología Invertebrados, Museo de La Plata (FCNyM-UNLP), Paseo del Bosque, 1900 La Plata, Argentina. Email: [email protected], fbrusa@ fcnym.unlp.edu.ar, [email protected] Abstract This contribution summarizes knowledge of organisms associated with apple snails, mainly Pomacea spp., either in a facultative or obligate manner, paying special attention to diseases transmitted via these snails to humans. A wide spectrum of epibionts on the shell and operculum of snails are discussed. Among them algae, ciliates, rotifers, nematodes, flatworms, oligochaetes, dipterans, bryozoans and leeches are facultative, benefitting from the provision of substrate, transport, access to food and protection. Among obligate symbionts, five turbellarian species of the genusTemnocephala are known from the branchial cavity, with T. iheringi the most common and abundant. The leech Helobdella ampullariae also spends its entire life cycle inside the branchial cavity; two copepod species and one mite are found in different sites inside the snails. Details of the nature of the relationships of these specific obligate symbionts are poorly known. Also, extensive studies of an intracellular endosymbiosis are summarized. Apple snails are the first or second hosts of several digenean species, including some bird parasites.A number of human diseases are transmitted by apple snails, angiostrongyliasis being the most important because of the potential seriousness of the disease. Additional keywords: Ampullariidae, Angiostrongylus, commensals, diseases, epibionts, parasites, Pomacea, symbiosis 73 Introduction The term “apple snail” refers to a number of species of freshwater snails belonging to the family Ampullariidae (Caenogastropoda) inhabiting tropical and subtropical regions (Hayes et al., 2015).
    [Show full text]
  • Download Preprint
    1 Mobilising molluscan models and genomes in biology 2 Angus Davison1 and Maurine Neiman2 3 1. School of Life Sciences, University Park, University of Nottingham, NG7 2RD, UK 4 2. Department of Biology, University of Iowa, Iowa City, IA, USA and Department of Gender, 5 Women's, and Sexuality Studies, University of Iowa, Iowa, City, IA, USA 6 Abstract 7 Molluscs are amongst the most ancient, diverse, and important of all animal taxa. Even so, 8 no individual mollusc species has emerged as a broadly applied model system in biology. 9 We here make the case that both perceptual and methodological barriers have played a role 10 in the relative neglect of molluscs as research organisms. We then summarize the current 11 application and potential of molluscs and their genomes to address important questions in 12 animal biology, and the state of the field when it comes to the availability of resources such 13 as genome assemblies, cell lines, and other key elements necessary to mobilising the 14 development of molluscan model systems. We conclude by contending that a cohesive 15 research community that works together to elevate multiple molluscan systems to ‘model’ 16 status will create new opportunities in addressing basic and applied biological problems, 17 including general features of animal evolution. 18 Introduction 19 Molluscs are globally important as sources of food, calcium and pearls, and as vectors of 20 human disease. From an evolutionary perspective, molluscs are notable for their remarkable 21 diversity: originating over 500 million years ago, there are over 70,000 extant mollusc 22 species [1], with molluscs present in virtually every ecosystem.
    [Show full text]
  • Evolution of the Pachychilidae TROSCHEL, 1857 (Chaenogastropoda, Cerithioidea) – from the Tethys to Modern Tropical Rivers 41
    44 44 he A Rei Series A/ Zitteliana An International Journal of Palaeontology and Geobiology Series A /Reihe A Mitteilungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie 44 An International Journal of Palaeontology and Geobiology München 2004 Zitteliana Umschlag 44 1 18.01.2005, 10:04 Uhr Zitteliana An International Journal of Palaeontology and Geobiology Series A/Reihe A Mitteilungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie 44 CONTENTS/INHALT REINHOLD R. LEINFELDER & MICHAEL KRINGS Editorial 3 DIETRICH HERM Herbert HAGN † 5 KAMIL ZÁGORŠEK & ROBERT DARGA Eocene Bryozoa from the Eisenrichterstein beds, Hallthurm, Bavaria 17 THORSTEN KOWALKE Evolution of the Pachychilidae TROSCHEL, 1857 (Chaenogastropoda, Cerithioidea) – from the Tethys to modern tropical rivers 41 HERBERT W. SCHICK The stratigraphical signifi cance of Cymaceras guembeli for the boundary between Platynota Zone and Hypselocyclum Zone, and the correlation of the Swabian and Franconian Alb 51 GÜNTER SCHWEIGERT, RODNEY M. FELDMANN & MATTHIAS WULF Macroacaena franconica n. sp. (Crustaceae: Brachyura: Raninidae) from the Turonian of S Germany 61 JÜRGEN KRIWET & STEFANIE KLUG Late Jurassic selachians (Chondrichthyes, Elasmobranchii) from southern Germany: Re-evaluation on taxonomy and diversity 67 FELIX SCHLAGINTWEIT Calcareous green algae from the Santonian Hochmoos Formation of Gosau (Northern Calcareous Alps, Austria, Lower Gosau Group) 97 MICHAEL KRINGS & HELMUT MAYR Bassonia hakelensis (BASSON) nov. comb., a rare non-calcareous
    [Show full text]
  • Ecological Diversification of Vibrio Fischeri Serially Passaged for 500 Generations in Novel Squid Host Euprymna Tasmanica
    Microb Ecol DOI 10.1007/s00248-013-0356-3 HOST MICROBE INTERACTIONS Ecological Diversification of Vibrio fischeri Serially Passaged for 500 Generations in Novel Squid Host Euprymna tasmanica William Soto & Ferdinand M. Rivera & Michele K. Nishiguchi Received: 4 June 2013 /Accepted: 16 December 2013 # Springer Science+Business Media New York 2014 Abstract Vibrio fischeri isolated from Euprymna scolopes V. fischeri ecotypes, and complex changes in biolumines- (Cephalopoda: Sepiolidae) was used to create 24 lines that cence. Our data demonstrate that numerous alternate fitness were serially passaged through the non-native host Euprymna optima or peaks are available to V. fi sc he ri in host adaptive tasmanica for 500 generations. These derived lines were char- landscapes, where novel host squids serve as habitat islands. acterized for biofilm formation, swarming motility, carbon Thus, V. fischeri founder flushes occur during the initiation of source utilization, and in vitro bioluminescence. Phenotypic light organ colonization that ultimately trigger founder effect assays were compared between “ES” (E. scolopes)and“ET” diversification. (E. tasmanica) V. fischeri wild isolates to determine if conver- gent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was ob- Introduction served in utilization of most carbon sources examined. Con- vergent evolution was evident in motility, biofilm formation, The Sepiolid Squid–Vibrio Mutualism and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold Sepiolid squids in the genera Sepiola and Euprymna form light increase in brightness) was collectively evident in the derived organ mutualisms with marine bioluminescent bacteria from lines relative to the ancestor.
    [Show full text]