Estimating Cell Capacity for Multi-Cell Electrical Energy System
Total Page:16
File Type:pdf, Size:1020Kb
Dissertations and Theses Spring 2013 Estimating Cell Capacity for Multi-Cell Electrical Energy System Iman Ahari Hashemi Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Computer Engineering Commons, and the Electrical and Electronics Commons Scholarly Commons Citation Hashemi, Iman Ahari, "Estimating Cell Capacity for Multi-Cell Electrical Energy System" (2013). Dissertations and Theses. 80. https://commons.erau.edu/edt/80 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Estimating Cell Capacity for Multi-Cell Electrical Energy System by Iman Ahari Hashemi A Thesis Submitted to the College of Engineering, Department of Electrical, Computer, Software & Systems Engineering In Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical and Computer Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida Spring 2013 Acknowledgements I would like to give special thanks to the Committee Chair Dr. Jianhua Liu for his invaluable guidance throughout the time that research was conducted. I would also like to thank the supervision of the committee members Dr. Ilteris Demirkiran and Dr. Thomas Yang. It would be of great honor to thank the endless loving support which I received from my family back home throughout my course of studies. iii Abstract Researcher: Iman Ahari Hashemi Title: Estimating Cell Capacity for Multi-Cell Electrical Energy System Institution: Embry-Riddle Aeronautical University Degree: Master of Science in Electrical and Computer Engineering Year: 2013 A Multi-Cell Electrical Energy System is a set of batteries that are connected in series. The series batteries provide the required voltage necessary for the contraption. After using the energy that is provided by the batteries, some cells within the system tend to have a lower voltage than the other cells. Also, other factors, such as the number of times a battery has been charged or discharged, how long it has been within the system and many other factors, result in some cells having a lesser capacity compared to the other cells within the system. The outcome is that it lowers the required capacity that the electrical energy system is required to provide. By having an unknown cell capacity within the system, it is unknown how much of a charge can be provided to the system so that the cells are not overcharged or undercharged. Therefore, it is necessary to know the cells capacity within the system. Hence, if we were dealing with a single cell, the capacity could be obtained by a full charge and discharge of the cell. In a series system that contains multiple cells a full charging or discharging cannot happen as it might result in deteriorating the structure of some cells within the system. Hence, to find the capacity of a single cell within an electrical energy system it is required to obtain a method that can estimate the value of each cell within the electrical energy system. To approach this method an electrical energy system is required. The electrical energy system consists of rechargeable non-equal capacity batteries to provide the required energy to the system, a battery management system (BMS) board to monitor the cells voltages, an Arduino board that provides the required communication to BMS board, and the PC, and a software that is able to deliver the required data obtained from the Arduino board to the PC. The outcome, estimating the capacity of a cell within a multi-cell system, can be used in many battery related technologies to obtain unknown capacities of different cells; such as the EcoEagle that partially receives its power from the electrical energy system. This thesis was conducted as the theory behind the EcoEagles Electrical Energy System. Key Words – Electrical Energy System, Cells, ESS, Green Energy, Battery Management System, BMS, Arduino. iv Table of Contents Thesis Review Committee: ........................................................................................................................... ii Acknowledgements ...................................................................................................................................... iii Abstract ........................................................................................................................................................ iv List of Tables .............................................................................................................................................. vii List of Figures ............................................................................................................................................ viii List of Acronyms ......................................................................................................................................... ix Chapter 1: Introduction ................................................................................................................................. 1 Statement of the Problem .......................................................................................................................... 4 Significance of the Study .......................................................................................................................... 6 Modeling the Aircrafts ESS ...................................................................................................................... 6 Chapter 2: Overview of Batteries.................................................................................................................. 9 What is a Battery? ..................................................................................................................................... 9 Types of Batteries ................................................................................................................................... 14 Capacity of a Battery .............................................................................................................................. 16 Standards of Batteries ............................................................................................................................. 19 Battery Performance Factors ................................................................................................................... 20 Mathematical Model of a Battery ........................................................................................................... 24 Chapter 3: Battery Management System (BMS) ........................................................................................ 26 1. Arduino ............................................................................................................................................... 26 2. Battery Management System Board ................................................................................................... 31 3. Charger ................................................................................................................................................ 34 4. Li-Po Batteries .................................................................................................................................... 37 5. Software .............................................................................................................................................. 38 Introduction ......................................................................................................................................... 38 Software Rundown .............................................................................................................................. 39 Chapter 4: Measurements ........................................................................................................................... 49 Battery Pack Capacity Values ................................................................................................................. 49 Battery Pack Characteristics ................................................................................................................... 54 Recommendations ............................................................................................................................... 55 Errors................................................................................................................................................... 57 v Chapter 5: Analysis ..................................................................................................................................... 58 How to Approach .................................................................................................................................... 58 Capacity vs. Curve .................................................................................................................................. 58 Error-free Capacity ............................................................................................................................. 58 Non Error-free Capacity...................................................................................................................... 63 Chapter 6: Conclusion ................................................................................................................................