Ipm of Vector Aphids

Total Page:16

File Type:pdf, Size:1020Kb

Ipm of Vector Aphids IPM OF VECTOR APHIDS Hajimu Takada Laboratory of Entomology, Faculty of Agriculture Kyoto Prefectural University, Kyoto, Japan ABSTRACT The following tactics are described for control of aphids as virus vectors; chemical con- trol (repellents, feeding deterrents, alarm pheromone, insecticides), physical control (mulch, fleece, netting) and biological control (insect parasitoids and predators). No tactic is able to protect plants completely against virus infections when used alone, except for certain fleeces. Multiple tactics must be used to build integrated pest management programs (IPM). INTRODUCTION Azadirachtin This paper reviews recent work on tactics This triterpenoid, isolated from the neem for controlling vector aphids to protect plants against tree (Azadirachta indica), reduced probing activity virus infection. I hope it will contribute to the by R. padi and Sitobion avenae on winter barley development of an effective strategy against the treated with concentrations of <500 ppm. The effect viruses, which cause serious damage to tropical lasted for at least four days after application (West crops. Such viruses include banana bunchy top virus and Mordue 1992). The reduction in probing activ- (BBTV) and papaya ringspot virus (PRSV). ity would diminish the probability of BYDV trans- mission by these aphids. CHEMICAL CONTROL Alarm Pheromone (-)-Polygodial Applying the alarm pheromone (E)-beta- This compound, isolated from water-pep- farnesene has not been effective, because it makes per (Polygonum hydropiper), is a sesquiterpenoid the aphids more active, and might increase transmis- which is highly repellent to aphids (Asakawa et al. sion of viruses. However, a spray application of 1988, Griffiths et al. 1989). Extraction of (-)- carbamate or organic phosphate, at one-tenth of the polygodial from the plant yielded material for a field recommended dose, in combination with the phero- trial to test the level of protection against barley mone, was successful in controlling aphids on ice- yellow dwarf virus (BYDV), transmitted by the berg lettuce (Ester et al. 1993). It thus seems to be aphid Rhopalosiphum padi. Under conditions of possible to diminish virus transmission by aphids by high pest and disease pressure, three two-weekly using an insecticide in combination with the phero- treatments of this compound at 50 g/ha increased the mone. yield by over 1 mt/ha. This is similar to the control Compounds derived from the alarm phero- achieved by the conventional broad-spectrum insec- mone can affect aphid settling and feeding, and ticide cypermethrin (Pickett et al. 1992). decrease virus spread both in the laboratory and in Keywords: Alarm pheromone, aphids, aphid parasitoid, feeding deterrent, fleece, IPM, mulch, repellent, virus vectors 1 the field (Dawson et al. 1988, Griffiths et al. 1989). systemic aphicides or sodium oleate, should be used. An alternative way of using alarm phero- mone is to disrupt effective alarm communication PHYSICAL CONTROL between aphids, by the presence of a high back- ground level of synthetic alarm pheromone. Under Mulch these conditions, predators may become more effec- tive in feeding on aphids. However, this hypothesis Kring (1964) first reported that short-wave- was not supported by the experimental results of E1- length radiation repelled aphids after a dispersal Agamy and Haynes (1992) when they worked with flight. Reflective (silver) mulch reduced aphid popu- the predator Navis americoferus. The potential role lations and virus incidence, and increased the yields of habituation or sensory adaptation is well worth of crops (Pinese et al. 1994). A new plastic mulch further investigation. with a reflective mirror-like surface, called “mirror mulch”, has recently been developed in Japan. When Mineral Oils mirror mulch was laid between rows in tobacco fields, populations of alate aphids in water traps were Certain mineral oils are known to reduce significantly lower, and a lower proportion of plants aphid colonization on plants, and thus the transmis- were diseased by potato virus Y-T strain (PVY-T), sion of virus disease (Simons and Zitter 1980). compared to treatments of silver mulch under the Vandenveken (1977) suggested two hypotheses for plants (Matsuzawa 1995). the effect of oils on aphid transmission of plant viruses. One is that oil might modify the charge of Fleece and Netting the stylets, thus impeding adsorption or elusion of virus particles. The second is that the inhibitory Various types of plant covers have been properties of oils might result from their electric suggested as a promising way of reducing virus insulating properties, which would hamper the ex- transmission by aphids. Even though the aphid change of charges between virus particles, aphid cannot pass through these covers, the question still mouthparts and plant cells. remains of whether penetration of leaves by the aphid’s stylets may occur if the leaves are in close Insecticides contact with the cover. One successful penetration per plant is sufficient for virus transmission by an The pyrethroid deltamethrin inhibits virus aphid. Field experiments with potato showed that transmission by the green peach aphid Myzus persicae one particular fleece (Lutrasil) completely protected by causing rapid knock-down and prolonged inca- the plants against virus transmission (PVY and pacitation of the insect (Gibson et al. 1982). In PLRV). The use of a second type of fleece laboratory tests with moderately pyrethroid-resis- (Agrifleece) and netting (Rantai, 19 mesh) resulted tant (R1) M. persicae, more of the aphids walked or in a small proportion of plants being infected flew from excised leaves pre-treated with deltamethrin (Harrewijn et al. 1991). A field of tobacco covered than from untreated leaves. R1 alatae and apterae with a fleece (possibly Lutrasil) for 50 days after which had dispersed from deltamethrin-treated leaves transplantation was fully protected against virus rarely transmitted potato virus Y (PVY). However, transmission (Tairako 1989). transmission by the more pyrethroid-resistant R2 alatae was only halved, although transmission by R2 BIOLOGICAL CONTROL apterae was undiminished. Treatment with deltamethrin decreased the spread of PVY both in a Insect Natural Enemies of Vector flight chamber, and in field experiments (Rice et al. Aphids 1983). Conventional insecticide treatments are not It is difficult to utilize insect natural en- necessarily effective in preventing the introduction emies of aphids for virus disease control. This is and subsequent field spread of non-persistent vi- particularly true when the pathogenic virus is trans- ruses. However, if naturally beneficial insects can- mitted in a non-persistent manner by several species, not suppress the population density of the vector as is the case with papaya ringspot virus (PRSV). aphid, the use of insecticides cannot be avoided. In Vector aphids of PRSV include the polyphagous such cases, insecticides with highly selective activity species Myzus persicae and Aphis gossypii, both of on the aphid and its natural enemies, such as certain which occur on many species of plants, not only in 2 the open field but also in scrub, orchards and gar- as mentioned above. L. scutellaris and other poten- dens. On the other hand, insect natural enemies can tial parasitoids may be useful. contribute to the control of a virus disease in cases where the pathogenic virus is transmitted in a semi- Predators of the Banana Aphid persistent or persistent manner by a particular aphid species. Banana bunchy-top virus (BBTV) is such a A total of about ten species belonging to case. This virus is transmitted in a semi-persistent Coccinellidae, Syrphidae, Chrysopidae and manner only by the banana aphid, Pentalonia Hemerobiidae have been recorded as predators of P. nigronervosa. nigronervosa (Tao 1990; Carver et al. 1993). Among these predators I think hemerobiids are the most Parasitoids of the Banana Aphid promising agents for the biological control of the aphid. This is because larvae of hemerobiids tend to Three programs of biological control of P. search and stay on concealed parts of the plant. nigronervosa have been attempted. In Western Small colonies of this aphid thus feed mainly on Samoa, two species of coccinellid predators were concealed parts such as the areas between the leaf used in a single program (Waterhause and Norris sheaths and the pseudostem of the banana plant. 1987), while in Tonga, two aphidiid parasitoids were used in succession. The first was Lysiphlebus Strategies for Vector Aphid Control testaceipes in 1987 (Stechmann and Voelkl 1988), and the second was Aphidius colemani in 1990-91 From the viewpoint of virus disease con- (Wellings et al. 1994). The first two programs have trol, there are two strategies for vector aphid con- produced no evidence that any of the introduced trol. agents have become established. The third program has not provided any evidence that the parasitoid is Direct Strategies: to prevent virus acqui- attacking P. nigronervosa in the field. However, A. sition and transmission by vector aphids colemani was recovered from Aphis gossypii on taro • To prevent vector aphids from landing about nine months after the last release. In August (repellents, mulches) 1992, the dissection of A. gossypii collected from • To prevent landing aphids from probing two taro sites revealed parasitism rates of 47% and (insecticides, feeding deterrents, fleece, 39%, respectively. P. nigronervosa collected from nets) banana growing on the margins of
Recommended publications
  • Chromosome-Level Genome Assembly of the Horned-Gall Aphid, Schlechtendalia
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431348; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Chromosome-level genome assembly of the horned-gall aphid, Schlechtendalia 2 chinensis (Hemiptera: Aphididae: Erisomatinae) 3 4 Hong-Yuan Wei1#, Yu-Xian Ye2#, Hai-Jian Huang4, Ming-Shun Chen3, Zi-Xiang Yang1*, Xiao-Ming Chen1*, 5 Chuan-Xi Zhang2,4* 6 1Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China 7 2Institute of Insect Sciences, Zhejiang University, Hangzhou, China 8 3Department of Entomology, Kansas State University, Manhattan, KS, USA 9 4State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; 10 Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant 11 Virology, Ningbo University, Ningbo, China 12 #Contributed equally. 13 *Correspondence 14 Zi-Xiang Yang, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China. 15 E-mail: [email protected] 16 Xiao-Ming Chen, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China. 17 E-mail: [email protected] 18 Chuan-Xi Zhang, Institute of Insect Sciences, Zhejiang University, Hangzhou, China. 19 E-mail: [email protected] 20 Funding information 21 National Natural Science Foundation of China, Grant/Award number: 31872305, U1402263; The basic research 22 program of Yunnan Province, Grant/Award number: 202001AT070016; The grant for Innovative Team of ‘Insect 23 Molecular Ecology and Evolution’ of Yunnan Province 24 25 Abstract 26 The horned gall aphid Schlechtendalia chinensis, is an economically important insect that induces 27 galls valuable for medicinal and chemical industries.
    [Show full text]
  • Effect of Imidacloprid Foliar Treatment and Banana Leaf Age on Pentalonia Nigronervosa (Hemiptera, Aphididae) Survival
    NewRobson Zealand et al.—Imidacloprid Journal of Crop effect and Horticulturalon Pentalonia Science, nigronervosa 2007, Vol. 35: 415–422 415 0014–0671/07/3504–0415 © The Royal Society of New Zealand 2007 Effect of imidacloprid foliar treatment and banana leaf age on Pentalonia nigronervosa (Hemiptera, Aphididae) survival JACQUELINE D. ROBSON of aphids and does not become systemic within the MARK G. WRIGHT* plant. From these results, it is likely that management 3050 Maile Way, Room 310 of banana aphid using imidacloprid under field Department of Plant and Environmental conditions will be effective on old leaves and new Protection Sciences leaves that are sprayed, but leaves emerging after University of Hawaii at Manoa sprays will not be completely protected from aphids. Honolulu, HI 96822, United States Regular scouting for aphids should be implemented email: [email protected] in support of imidacloprid applications. RODRIGO P. P. ALMEIDA Keywords banana bunchy top virus; pest 137 Mulford Hall management; Provado; vector Department of Environmental Science, Policy and Management University of California, Berkeley INTRODUCTION CA 94720, United States Pentalonia nigronervosa Coq. (Hemiptera, Aphididae), the banana aphid, is the vector of Abstract Pentalonia nigronervosa, the banana Banana bunchy top virus (BBTV) (Magee 1927; aphid, is the vector of Banana bunchy top virus Hu et al. 1996), the causal agent of banana bunchy to banana. This virus is the etiological agent of top disease (BBTD). This disease was first detected banana bunchy top disease, a limiting factor in in Hawaii, United States in 1989 (Conant 1992), many banana growing regions, including Hawaii, and despite eradication and control efforts, has since United States.
    [Show full text]
  • Aphids (Hemiptera, Aphididae) Armelle Coeur D’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic
    Aphids (Hemiptera, Aphididae) Armelle Coeur d’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic To cite this version: Armelle Coeur d’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic. Aphids (Hemiptera, Aphi- didae). Alien terrestrial arthropods of Europe, 4, Pensoft Publishers, 2010, BioRisk, 978-954-642-554- 6. 10.3897/biorisk.4.57. hal-02824285 HAL Id: hal-02824285 https://hal.inrae.fr/hal-02824285 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae).
    [Show full text]
  • Book of Abstracts of the Xiith IPVES, Arusha, Tanzania
    Evolutionvolution, Ecology & Control of Plant Viruses Program and Book of Abstracts 12th International Symposium on Plant Virus Epidemiology Evolution, Ecology and Control of Plant Viruses 28 January ‐ 1 February 2013 The Ngurdoto Mountain Lodge Arusha, Tanzania Symposium organized by International Committee on Plant Virus Epidemiology and International Institute of Tropical Agriculture in partnership with Mikocheni Agricultural Research Institute (MARI), Tanzania National Agricultural Research Organization (NARO), Uganda West and Central African Council for Agricultural Research and Development (CORAF/WECARD) Bioversity International AVRDC ‐ The World Vegetable Center Supported by Africa's Genomics Company www.inqababiotec.co.za About ICPVE The International Committee for Plant Virus Epidemiology (ICPVE) is a subject committee of the International Society for Plant Pathology (ISPP). The ISPP was founded in 1968 in the United Kingdom, for worldwide development of plant pathology. The ISPP sponsors International Congress of Plant Pathology, and International Meetings of its Subject Committees. ICPVE, since formation in 1979, has conducted eleven international symposia in different parts of the world. This 12th IPVE Symposium in Arusha, Tanzania, is the first to be held in the Africa. List of IPVE Symposia Series: 1. UK, Oxford, 28 - 31 July 1981 2. Australia, Corowa, 25 - 27 August 1983 3. USA, Orlando, 6 - 8 August 1986 4. France, Montpellier, 1 - 5 September 1989 5. Italy, Valenzano (Bari), 27-31 July 1992 6. Israel, Jerusalem, 23 - 28 April 1995 7. Spain, Aguadulce (Almeria), 11 - 16 April 1999 8. Germany, Ascherleben, 12 - 17 May 2002 9. Peru, Lima (CIP), 4 - 7 April 2005 10. India, Hyderabad (ICRISAT), 15 - 19 October 2007 11.
    [Show full text]
  • Musa Species (Bananas and Plantains) Authors: Scot C
    August 2006 Species Profiles for Pacific Island Agroforestry ver. 2.2 www.traditionaltree.org Musa species (banana and plantain) Musaceae (banana family) aga‘ (ripe banana) (Chamorro), banana, dessert banana, plantain, cooking banana (English); chotda (Chamorro, Guam, Northern Marianas); fa‘i (Samoa); hopa (Tonga); leka, jaina (Fiji); mai‘a (Hawai‘i); maika, panama (New Zealand: Maori); meika, mei‘a (French Polynesia); siaine (introduced cultivars), hopa (native) (Tonga); sou (Solomon Islands); te banana (Kiribati); uchu (Chuuk); uht (Pohnpei); usr (Kosrae) Scot C. Nelson, Randy C. Ploetz, and Angela Kay Kepler IN BRIEF h C vit Distribution Native to the Indo-Malesian, E El Asian, and Australian tropics, banana and C. plantain are now found throughout the tropics and subtropics. photo: Size 2–9 m (6.6–30 ft) tall at maturity. Habitat Widely adapted, growing at eleva- tions of 0–920 m (0–3000 ft) or more, de- pending on latitude; mean annual tempera- tures of 26–30°C (79–86°F); annual rainfall of 2000 mm (80 in) or higher for commercial production. Vegetation Associated with a wide range of tropical lowland forest plants, as well as nu- merous cultivated tropical plants. Soils Grows in a wide range of soils, prefer- ably well drained. Growth rate Each stalk grows rapidly until flowering. Main agroforestry uses Crop shade, mulch, living fence. Main products Staple food, fodder, fiber. Yields Up to 40,000 kg of fruit per hectare (35,000 lb/ac) annually in commercial or- Banana and plantain are chards. traditionally found in Pacific Intercropping Traditionally grown in mixed island gardens such as here in Apia, Samoa, although seri- cropping systems throughout the Pacific.
    [Show full text]
  • Banana Bunchy Top Virus and Its Vector Pentalonia Nigronervosa (Hemiptera: Aphididae)1
    Pathology Circular No. 417 Florida Department of Agriculture and Consumer Services 2015 Division of Plant Industry FDACS-P-02046 Banana bunchy top virus and its vector Pentalonia nigronervosa (Hemiptera: Aphididae)1 Susan E. Halbert2 and Carlye A. Baker3 INTRODUCTION: Banana bunchy top disease (BBT) is one of the most serious diseases of banana. It stunts the plants and reduces yield severely. The disease is caused by Banana bunchy top virus (BBTV), which is transmitted by banana aphids (Pentalonia nigronervosa Coquerel). The aphids occur widely in Florida, but the pathogen has not been reported in the Western Hemisphere. In Florida, there is little commercial banana production, but dooryard plantings occur as far north as Gainesville. Bananas are propagated vegetatively, except for a few ornamental cultivars. Thus, systemic pathogens such as viruses are propagated with the crop. Florida is a high-risk location for exotic introductions of insects and pathogens that arrive with planting material, including BBTV. Even though there would be little commercial consequence in Florida to the introduction of BBTV, there are few barriers to prevent the disease from spreading into commercial production regions in the Caribbean, South, and Central America, once it reaches Florida. Fortunately, strict regulatory measures can be used to control the disease (Ploetz et al. 2003). DESCRIPTION: Symptoms of BBT are relatively easy to recognize. As the name implies, severely affected plants produce small, erect, bunched leaves (Fig. 1). Leaf margins are yellowed and turn necrotic. Infected plants rarely produce a bunch, but if they do, the fruit stalk is small and distorted (Ferreira et al.
    [Show full text]
  • Presencia Del Pulgón Marrón, Pentalonia Nigronervosa (Hemiptera: Aphididae) En Banano (Musa Paradisiaca) De La Variedad Nanica, En Paraguay
    Bol. Mus. Nac. Hist. Nat. Parag. Vol. 17, nº 1 (Ago. 2013): 100-10091-92 PRESENCIA DEL PULGÓN MARRÓN, PENTALONIA NIGRONERVOSA (HEMIPTERA: APHIDIDAE) EN BANANO (MUSA PARADISIACA) DE LA VARIEDAD NANICA, EN PARAGUAY EDGAR A. BENÍTEZ DÍAZ1 1Laboratorio de Entomología y Acarología, DL/DLSVBM, SENAVE, San Lorenzo, Paraguay. E-mail: [email protected] Resumen.- Se confirma la presencia del Pulgón Marrón, Pentalonia nigronervosa (Hemiptera: Aphididae), hallado en plantas de Banano (Musa paradisiaca) de la variedad Nanica, en la localidad de Caraguatay, Departamento de Cordi- llera, Paraguay. Palabras clave: Pulgón marrón, Pentalonia nigronervosa, Hemiptera, Aphididae, Banano, Paraguay. Abstract.- The presence of the Brown Aphid, Pentalonia nigronervosa (Hemíptera: Aphididae) found on Banana plants (Musa paradisiaca) of the Nanica variety, at the locality of Caraguatay, Cordillera Department, Paraguay, is reported. Key words: Brown aphid, Pentalonia nigronervosa, Hemiptera, Aphididae, Banana, Paraguay. El banano constituye un rubro de gran impor- dicha oportunidad fueron encontrados estados tancia en la producción frutícola de nuestro ninfales y adultos ápteros de pulgones de co- país, por el área cultivada, volumen de pro- lor marrón. La cantidad de ejemplares era in- ducción y su gran aceptación por parte de los suficiente para un análisis detallado como para consumidores. lograr un diagnóstico acertado, no obstante se En los últimos años, en ciertas zonas pro- sospechaba que se trataría de la especie Penta- ductoras se está observando la presencia de lonia nigronervosa. un insecto conocido como Pulgón Marrón del En marzo de 2011 ingresan nuevamente Banano, por ser éste su hospedero principal, y muestras de banano de la misma variedad, del considerado plaga mayor en todas las regiones mismo lugar que el anterior y se encontró gran del mundo donde se cultiva esta musácea.
    [Show full text]
  • A Network of Botanic Gardens and Arboreta
    Journal of Botanic Gardens Conservation International Volume 13 • Number 1 • January 2016 Early warning systems for plant health The role of botanic gardens Volume 13 • Number 1 EDITORIAL TREE AND PLANT HEALTH EARLY WARNING SYSTEMS - THE ROLE OF BOTANIC GARDENS Dr Charles Lane .... 02 EDITORS MESSAGE FROM BGCI’S SECRETARY GENERAL Dr Paul Smith .... 03 AN EARLY WARNING SYSTEM FOR NEW AND EMERGING PLANT PEST AND DISEASE RISKS: A NETWORK OF BOTANIC GARDENS AND ARBORETA .... 04 Ellie Barham TREE HEALTH, IPSN AND THE YORKSHIRE ARBORETUM John Grimshaw .... 09 Suzanne Sharrock Ellie Barham CONTRIBUTIONS OF CHRISTCHURCH BOTANIC GARDENS TO PLANT Director of Global International Plant Sentinel HEALTH AND BIOSECURITY IN NEW ZEALAND Programmes Network Coordinator .... 12 John Clemens and Eckehard Brockerhoff Cover Photo : Longhorn beetle (Shutterstock.com) MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF COMMON Design : Seascape www.seascapedesign.co.uk NURSERY AND LANDSCAPE PESTS IN SHENZHEN, CHINA Hui Dong .... 16 THE SENTINEL PLANT NETWORK: ENHANCING BIOSECURITY BY BGjournal is published by Botanic Gardens Conservation LEVERAGING THE CAPACITY OF PUBLIC GARDENS TO SUPPORT EARLY .... 20 International (BGCI) . It is published twice a year. Membership is open to all interested individuals, DETECTION OF AND RAPID RESPONSE TO INVASIVE ALIEN PESTS institutions and organisations that support the aims Daniel Stern and Rachel McCarthy of BGCI. Further details available from: BIOSECURITY OF WOODY PLANT COLLECTIONS IN MLY Nˇ ANY • Botanic Gardens Conservation International, Descanso ARBORETUM House, 199 Kew Road, Richmond, Surrey TW9 3BW Marek Barta, Peter Ferus and Peter Ho tka .... 23 UK. Tel: +44 (0)20 8332 5953, Fax: +44 (0)20 8332 5956 ´ E-mail: [email protected], www.bgci.org SURVEYING, MONITORING AND QUARANTINING FOR NOTIFIABLE • BGCI-Russia, c/o Main Botanical Gardens, PESTS AND DISEASES AT THE EDEN PROJECT Botanicheskaya st., 4, Moscow 127276, Russia.
    [Show full text]
  • 7-2-27-571.Pdf
    Journal of Entomology and Zoology Studies 2019; 7(2): 158-167 E-ISSN: 2320-7078 P-ISSN: 2349-6800 First report on development of sustainable JEZS 2019; 7(2): 158-167 © 2019 JEZS management strategy against Pentalonia Received: 11-01-2019 Accepted: 13-02-2019 nigronervosa coq. vector of banana bunchy top Nilakshi Kakati virus disease, its seasonal variation and effect on Department of Plant Pathology, Assam Agricultural University, yield of banana in Jorhat district of Assam– A Jorhat, Assam, India north eastern state of India PD Nath Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India Nilakshi Kakati and PD Nath Abstract Field experiments were conducted during 2013-15 in experimental plots of Assam Agricultural University, Jorhat, Assam to evolve a suitable management strategy against Pentalonia nigronervosa vector of Banana bunchy top virus disease. Virus free planting material cv. Grand Naine (tissue cultured) along with different pesticide combinations were used to reduced vector population and disease incidence in the field. Banana plants treated with foliar spraying of Imidacloprid @ 0.1% at 60, 90, 120 and 150 days after planting showed no disease incidence (0.00%), zero insect vector population count in all the two cropping seasons. Insect vector population was recorded in the range of 0.00 to 10.67, average 3.28 (2013-14), 0.00 to 9.33, average 2.67(2014-15) and 0.00 to 10.75, average 3.39 (pooled data).Whereas in untreated control plots recorded the highest disease incidence 95.84 per cent corresponding with a highest vector population in the range of 0.00 to 110.55, average 24.86 (pooled data).
    [Show full text]
  • Alternative Hosts of Banana Aphid Pentalonia Nigronervosa Coq
    Journal of Advanced Agricultural Technologies Vol. 4, No. 4, December 2017 Alternative Hosts of Banana Aphid Pentalonia nigronervosa Coq. (Hemiptera: Aphididae), the Vector Transmitting Banana Bunchy Top Virus Suparman, Bambang Gunawan, Yulia Pujiastuti, Arsi, and Rizky Randal Cameron Department of Plant Protection, Faculty of Agriculture, Sriwijaya University, Palembang, Indonesia Email: {suparman, ypujiastuti, arsyarsy}@unsri.ac.id, {bgsyailendra, rizky.be.hha}@gmail.com Abstract—Banana Bunchy Top Virus cause very destructive the crops. BBTD indiscriminately infects banana and disease on banana. The virus is transmitted by Pentalonia plantain cultivated in the low altitude areas [3]. nigronervosa in circulative manner. Plants infected show The early symptoms of BBTV infection are obvious, progressive dwarfing, upright crowded leaves and produce easily observable and quite distinct from other known no fruit. Surveys conducted in 2016 in South Sumatra, banana virus symptoms. These symptoms include Indonesia, showed that the disease distribution was affected by human activities and the vector, but the vector was development of morse code streaking of variable length scarcely found in the field, suggested that there must be in the leaf veins, midribs and petioles, correlate internally alternative hosts for the vector. There was a report that the with modification of the phloem and surrounding tissue aphid can live on members of zingiberaceous and araceous of the vascular bundles [4]. The very specific symptom of plants. In this research, 11 zingiberaceous and araceous BBTD is the upright and crowded leaves at the apex of plants frequently found in banana planting areas were the plant for which the disease is named bunchy top. In tested for their suitability as alternative host of P.
    [Show full text]
  • Genome Sequence of the Banana Aphid, Pentalonia Nigronervosa Coquerel (Hemiptera: Aphididae) and Its Symbionts
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.060517; this version posted April 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome sequence of the banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) and its symbionts Thomas C. Mathers1*, Sam T. Mugford1, Saskia A. Hogenhout1 and Leena Tripathi2* 1Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom 2International Institute of Tropical Agriculture (IITA), P.O. Box 30709-00100, Nairobi, Kenya *Corresponding authors Email: [email protected] Email: [email protected] Keywords Hemiptera, genome assembly, insect vector, plant pest, phylogenomics 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.060517; this version posted April 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae), is a major pest of cultivated bananas (Musa spp., order Zingiberales), primarily due to its role as a vector of Banana bunchy top virus (BBTV), the most severe viral disease of banana worldwide. Here, we generated a highly complete genome assembly of P. nigronervosa using a single PCR-free Illumina sequencing library. Using the same sequence data, we also generated complete genome assemblies of the P.
    [Show full text]
  • New Record of Coccinella Transversalis F. on Bushy Lac Host, Flemingia Semialata
    Short Communications 359 NEW RECORD OF COCCINELLA TRANSVERSALIS F. ON BUSHY LAC HOST, FLEMINGIA SEMIALATA The most common Indian lac insect of commercial The occurrence of adults of Coccinella transversalis importance is Kerria lacca (Kerr) thrives well on tender was recorded for the first time in lac production system twigs of specific host plants called lac hosts. Of the on lac encrustation as well as on inflorescence of more than 400 plant speciesreported as lac hosts, lac Flemingia semialata. The adults of this predator insect is commercially cultivated on Schleichera oleosa appeared on kusmi lac crop raised on F. semialata during (kusum), Butea monosperma (palas), Ziziphus the later stage of crop growth, it is unlikely that it predate mauritiana (ber) and Flemingia semialata (Sharma et on lac insect after the formation of thick cell over its al., 1997). Flemingia semialata is a leguminous plant body. The occurrence of this predatory beetle was not and has been identified as potential quick growing observed in early stage of crop growth period. It might bushy lac host suitable for intensive lac cultivation. F. be due to application of insecticides on lac crop during semialata is a native of Nepal and distributed in India, the early stage of crop growth period for the management Pakistan and Bhutan. Owing to its merits, organized of predatory insect viz., Eublemma amabilis, plantations of semialata are increasing year by year in Pseudohypatopa pulverea and Chrysopa spp. of lac potential lac growing tracts of the country for lac insect, Kerria lacca (Kerr). cultivation. Transverse ladybirds are medium in size ranging The ladybird beetles are of great economic about 4-6 mm in length; the transverse ladybird shows importance as their both larval and adult stages are little variation across its wide range.
    [Show full text]