On the Origin of Epithermal Sn-Ag-Zn Mineralization at the Pirquitas Mine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Argyrodite Ag8ges6 C 2001-2005 Mineral Data Publishing, Version 1
Argyrodite Ag8GeS6 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic, pseudocubic. Point Group: mm2. Pseudo-octahedra, dodecahedra, cubes, or as combinations of these forms, in crystals as large as 18 cm. Also radiating crystal aggregates, botryoidal crusts, or massive. Twinning: Pseudospinel law {111}; repeated interpenetration twins of pseudododecahedra on {111}. Physical Properties: Fracture: Uneven to slightly conchoidal. Tenacity: Brittle. Hardness = 2.5–3 VHN = n.d. D(meas.) = 6.29 D(calc.) = 6.32 Optical Properties: Opaque. Color: Steel-gray with a red tint, tarnishes black; in polished section, gray-white with a violet tint. Streak: Gray-black. Luster: Strong metallic. Pleochroism: Very weak. Anisotropism: Weak. R1–R2: (400) 28.9–29.5, (420) 27.9–28.5, (440) 27.1–27.7, (460) 26.3–26.9, (480) 25.8–26.3, (500) 25.3–25.8, (520) 25.0–25.4, (540) 24.7–25.2, (560) 24.6–25.0, (580) 24.5–24.9, (600) 24.4–24.9, (620) 24.5–24.8, (640) 24.6–24.9, (660) 24.5–24.9, (680) 24.6–25.0, (700) 24.7–25.0 Cell Data: Space Group: Pna21. a = 15.149(1) b = 7.476(2) c = 10.589(1) Z = 4 X-ray Powder Pattern: Machacamarca, Bolivia. 3.02 (100), 1.863 (50), 2.66 (40), 3.14 (30), 2.44 (30), 2.03 (30), 1.784 (20) Chemistry: (1) (2) (3) Ag 75.78 74.20 76.51 Fe 0.68 Ge 3.65 4.99 6.44 Sn 3.60 3.36 Sb trace trace S 16.92 16.45 17.05 Total 99.95 99.68 100.00 (1) Chocaya, Bolivia. -
A La Sombra De Los Mallkus. Tradición Oral, Ritualidad Y Ordenamiento Del Paisaje En Una Comunidad De Nor Lípez (Potosí, Bolivia)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portal de Revistas Científicas Complutenses A la sombra de los mallkus. Tradición oral, ritualidad y ordenamiento del paisaje en una comunidad de Nor Lípez (Potosí, Bolivia) Francisco M. GIL GARCÍA Universidad Complutense de Madrid Dpto. Historia de América II (Antropología de América) [email protected] Recibido: 9 de noviembre de 2007 Aceptado: 15 de noviembre de 2007 RESUME Este trabajo presenta una etnografía de los dos cerros tutelares de una comunidad de Nor Lípez (Potosí, Bolivia), atendiendo a su protagonismo en la tradición oral y en el ordenamiento del paisaje. En primer lugar se analizan distintos relatos que hablan del que denominaré «paisajismo mítico» de ambos cerros, remonta- do a un tiempo inmemorial y en relación con la civilización por parte del Inca de un paisaje antropomorfiza- do y en conflicto. Seguidamente, considerando las implicaciones espaciales del ritual de llamado de lluvia que anualmente se celebra en esta comunidad, se apuntan diferentes líneas a partir de las cuales defino la «ritualidad paisajística» desplegada en torno a estos dos cerros. Palabras clave: Nor Lípez, cerros, tradición oral, ritual, ordenamiento del paisaje. In the shade of the mallkus. Oral tradition, rituality, and landscape management in a community of or Lipez (Potosi, Bolivia) ABSTRACT This paper shows an ethnography of the two mountains guardians of a community in Nor Lipez (Potosi, Bolivia), paying attention to their prominence in oral tradition and landscape management. First of all, I analyse a group of tails about those I will call «mythic landscape» of this two both mountains, dated from an immemorial time and related to an Inca civilizing an anthropomorphic landscape in conflict. -
Plateau-Style Accumulation of Deformation: Southern Altiplano
TECTONICS, VOL. 24, TC4020, doi:10.1029/2004TC001675, 2005 Plateau-style accumulation of deformation: Southern Altiplano Kirsten Elger, Onno Oncken, and Johannes Glodny GeoForschungsZentrum Potsdam, Potsdam, Germany Received 5 May 2004; revised 17 December 2004; accepted 23 March 2005; published 31 August 2005. [1] Employing surface mapping of syntectonic during the Paleogene, initially reactivating crustal sediments, interpretation of industry reflection- weak zones and by thermal weakening of the crust seismic profiles, gravity data, and isotopic age dating, with active magmatism mainly in the Neogene stage. we reconstruct the tectonic evolution of the southern Citation: Elger, K., O. Oncken, and J. Glodny (2005), Plateau- Altiplano (20–22°S) between the cordilleras style accumulation of deformation: Southern Altiplano, Tectonics, defining its margins. The southern Altiplano crust 24, TC4020, doi:10.1029/2004TC001675. was deformed between the late Oligocene and the late Miocene with two main shortening stages in the Oligocene (33–27 Ma) and middle/late Miocene 1. Introduction (19–8 Ma) that succeeded Eocene onset of shortening at the protoplateau margins. Shortening [2] Although considerable advance has been made in recent years in understanding the processes involved in rates in the southern Altiplano ranged between 1 and the formation of orogenic plateaus, the precise temporal 4.7 mm/yr with maximum rates in the late Miocene. and spatial patterns of uplift and lateral progradation of Summing rates for the southern Altiplano and the -
Weiss Et Al, 1995) This Paper Disputes the Interpretation of Castor Et Al
EVALUATION OF THE GEOLOGIC RELATIONS AND SEISMOTECTONIC STABILITY OF THE YUCCA MOUNTAIN AREA NEVADA NUCLEAR WASTE SITE INVESTIGATION (NNWSI) PROGRESS REPORT 30 SEPTEMBER 1995 CENTER FOR NEOTECTONIC STUDIES MACKAY SCHOOL OF MINES UNIVERSITY OF NEVADA, RENO DISTRIBUTION OF ?H!S DOCUMENT IS UKLMTED DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document CONTENTS SECTION I. General Task Steven G. Wesnousky SECTION II. Task 1: Quaternary Tectonics John W. Bell Craig M. dePolo SECTION III. Task 3: Mineral Deposits Volcanic Geology Steven I. Weiss Donald C. Noble Lawrence T. Larson SECTION IV. Task 4: Seismology James N. Brune Abdolrasool Anooshehpoor SECTION V. Task 5: Tectonics Richard A. Schweickert Mary M. Lahren SECTION VI. Task 8: Basinal Studies Patricia H. Cashman James H. Trexler, Jr. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. -
Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5. -
Chapter 1: Introduction and Geologic Setting…………………………………… 1 Introduction to the Los Frailes Ignimbrite Complex……………………
GEOCHEMISTRY OF THE NEOGENE LOS FRAILES IGNIMBRITE COMPLEX ON THE CENTRAL ANDEAN ALTIPLANO PLATEAU A Thesis Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Science by Joseph John Kato August 2013 © 2013 Joseph John Kato ABSTRACT The Los Frailes Ignimbrite Complex sits in the backarc of the Andean Central Volcanic Zone (CVZ) and is the most easterly of the large Altiplano volcanic centers. Despite its large size (2000 km3) and substantial mineralization in its satellite units, the majority of the Los Frailes Complex remains poorly described with conflicting age assessments of the main Los Frailes ignimbrite. Processes related to its emplacement include: variable crustal thickening and uplift over a steepening subducted slab, episodes of delamination of the mantle-lithosphere and lower crust and deep crustal flow. Based on 25 new analyses and the works of previous sub-regional studies, a three tier crustal magma evolution is proposed for the Los Frailes Complex, similar to models suggested for Puna ignimbrites. The crust-to-mantle mixing ratio of the 18 erupted mass is put near 50:50 based on new fractionation corrected δ OQuartz analyses (+9.43-10.79‰). AFC models incorporating new 87Sr/86Sr (0.710-0.713) and 143 144 Nd/ Nd (0.5121-0.5123) ƐNd (-9 to -6) ratios and the strongly peraluminous character of the complex support a metapelitic crustal end-member and silicic crustal base. Melting and mixing near the Moho is established based on steep HREE patterns (Sm/Yb=4-12) and very high Sr content (400-650 ppm Sr) while middle crustal plagioclase removal creates negative Eu anomalies (Eu/Eu*=0.6-0.9). -
Sedimentary Record of Andean Mountain Building
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321814349 Sedimentary record of Andean mountain building Article in Earth-Science Reviews · March 2018 DOI: 10.1016/j.earscirev.2017.11.025 CITATIONS READS 12 2,367 1 author: Brian K. Horton University of Texas at Austin 188 PUBLICATIONS 5,174 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Petroleum Tectonic of Fold and Thrust Belts View project Collisional tectonics View project All content following this page was uploaded by Brian K. Horton on 15 December 2018. The user has requested enhancement of the downloaded file. Earth-Science Reviews 178 (2018) 279–309 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Sedimentary record of Andean mountain building T Brian K. Horton Department of Geological Sciences and Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, United States ARTICLE INFO ABSTRACT Keywords: Integration of regional stratigraphic relationships with data on sediment accumulation, provenance, Andes paleodrainage, and deformation timing enables a reconstruction of Mesozoic-Cenozoic subduction-related Fold-thrust belts mountain building along the western margin of South America. Sedimentary basins evolved in a wide range of Foreland basins structural settings on both flanks of the Andean magmatic arc, with strong signatures of retroarc crustal Orogeny shortening, flexure, and rapid accumulation in long-lived foreland and hinterland basins. Extensional basins also Sediment provenance formed during pre-Andean backarc extension and locally in selected forearc, arc, and retroarc zones during Late Stratigraphy Subduction Cretaceous-Cenozoic Andean orogenesis. -
European Journal of Mineralogy
Title Grundmannite, CuBiSe<SUB>2</SUB>, the Se-analogue of emplectite, a new mineral from the El Dragón mine, Potosí, Bolivia Authors Förster, Hans-Jürgen; Bindi, L; Stanley, Christopher Date Submitted 2016-05-04 European Journal of Mineralogy Composition and crystal structure of grundmannite, CuBiSe2, the Se-analogue of emplectite, a new mineral from the El Dragόn mine, Potosí, Bolivia --Manuscript Draft-- Manuscript Number: Article Type: Research paper Full Title: Composition and crystal structure of grundmannite, CuBiSe2, the Se-analogue of emplectite, a new mineral from the El Dragόn mine, Potosí, Bolivia Short Title: Composition and crystal structure of grundmannite, CuBiSe2, Corresponding Author: Hans-Jürgen Förster Deutsches GeoForschungsZentrum GFZ Potsdam, GERMANY Corresponding Author E-Mail: [email protected] Order of Authors: Hans-Jürgen Förster Luca Bindi Chris J. Stanley Abstract: Grundmannite, ideally CuBiSe2, is a new mineral species from the El Dragόn mine, Department of Potosí, Bolivia. It is either filling small shrinkage cracks or interstices in brecciated kruta'ite−penroseite solid solutions or forms independent grains in the matrix. Grain size of the anhedral to subhedral crystals is usually in the range 50−150 µm, but may approach 250 µm. Grundmannite is usually intergrown with watkinsonite and clausthalite; other minerals occasionally being in intimate grain-boundary contact comprise quartz, dolomite, native gold, eskebornite, umangite, klockmannite, Co-rich penroseite, and three unnamed phases of the Cu−Bi−Hg−Pb−Se system, among which is an as-yet uncharacterizedspecies with the ideal composition Cu4Pb2HgBi4Se11. Eldragόnite and petrovicite rarely precipitated in the neighborhood of CuBiSe2. Grundmannite is non-fluorescent, black and opaque with a metallic luster and black streak. -
Evidence from Lake City Caldera, USA GEOSPHERE
Research Paper GEOSPHERE Controls on hydrothermal fluid flow in caldera-hosted settings: Evidence from Lake City caldera, USA 1 1 1 2 3 GEOSPHERE; v. 13, no. 6 Thomas O. Garden , Darren M. Gravley , Ben M. Kennedy , Chad Deering , and Isabelle Chambefort 1Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand 2 doi:10.1130/GES01506.1 Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, Michigan 49931, USA 3GNS Science, Wairakei Research Centre, Taupo 3377, New Zealand 10 figures; 3 tables ABSTRACT tion thereof (Table 1). It is not well understood why some calderas host hydro- CORRESPONDENCE: thermal systems while others do not or what factors promote fluid localization thomas .o .garden@gmail .com Silicic caldera volcanoes are often associated with hydrothermal systems in certain parts of a caldera. In particular, caldera “ring faults” are commonly economically important for electricity generation and localization of ore de- suggested to be important structures for localizing fluid flow (e.g., Duex and CITATION: Garden, T.O., Gravley, D.M., Kennedy, B.M., Deering, C., and Chambefort, I., 2017, Controls posits. Despite their potential importance, the poor exposure that is typical in Henry, 1981; Wood, 1994; Guillou-Frottier et al., 2000; Stix et al., 2003; Kissling on hydrothermal fluid flow in caldera-hosted settings: caldera settings has limited the number of detailed studies of the relationship and Weir, 2005); yet no studies to date have focused on a thorough examina- Evidence from Lake City caldera, USA: Geosphere, between caldera structures and fluid flow. We use field mapping, outcrop scale tion of their permeability structure. -
Silver Sand Project, Potosí Department, Bolivia
Silver Sand Project, Potosí Department, Bolivia Technical Report for: April 6, 2017 Prepared by or under the Supervision of: Donald J. Birak A Qualified Person as defined by Canadian National Instrument 43-101 Registered Member, Society for Mining, Metallurgy and Exploration (SME) Fellow, Australasian Institute of Mining and Metallurgy (AusIMM) Silver Sand Project, Bolivia 1 Table of Contents Page List of Tables ............................................................................................................... 3 List of Figures .............................................................................................................. 3 Section 1: Summary .................................................................................................... 5 Section 2: Introduction ................................................................................................ 9 Section 3: Reliance on Other Experts ......................................................................... 10 Section 4: Property Description and Location ............................................................ 11 Section 5: Accessibility, Climate, Local Resources, Infrastructure and Physiography ... 17 Section 6: History ...................................................................................................... 19 Section 7: Geological Setting and Mineralization ....................................................... 21 Section 8: Deposit Types .......................................................................................... -
2018 Resource and Reserves
Resources & Reserves as at 31 December 2018 Contents Page number About this report 2 Definitions 4 Metals and Minerals: Copper 5 Zinc 17 Nickel 34 Ferroalloys 38 Aluminium/Alumina 42 Iron ore 43 Energy Products: Coal 47 Oil 66 About this report We report our resources and reserves in accordance with the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code), the 2016 edition of the South African Code for Reporting of Mineral Resources and Mineral Reserves (SAMREC), the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Standards on Mineral Resources and Reserves (2014 edition) and the Petroleum Resources Management System (PRMS) for reporting oil and natural gas Reserves and Resources. Overview Nickel The resource and reserve data in the following tables are The Canadian and New Caledonian Mineral Resources as at 31 December 2018, unless otherwise noted. For and Mineral Reserves estimates are prepared in comparison purposes, data for 2017 has been included. accordance with the CIM Definition Standards on Mineral Resources and Mineral Reserves, adopted by CIM Council Metric units are used throughout. on 10 May 2014, and the CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines, All data is presented on a 100% asset basis, with the adopted by CIM Council on 23 November 2003, and have Glencore attributable percentage shown against each been compiled using geo-statistical and/or classical asset, with the exception of Oil assets which are shown on methods, plus economic and mining parameters a working interest basis. appropriate to each project. -
Proyecto Completo (.Pdf, 503
1 PROGRAMA MECESUP PROGRAMA NACIONAL DE DOCTORADO EN CIENCIAS MENCION GEOLOGIA UNIVERSIDAD DE CHILE + UNIVERSIDAD CATOLICA DEL NORTE LINEA DE APOYO AL POSTGRADO CODIGO UCH 0010 PROYECTO REFORMULADO DICIEMBRE DE 2000 2 TABLA DE CONTENIDO 1. PRESENTACION DEL PROYECTO...................................................................................................................................3 1.1. TITULO ...........................................................................................................................................................................3 1.2. TIPO DE PROYECTO.....................................................................................................................................................3 1.3. UNIVERSIDAD RESPONSABLE DEL PROYECTO....................................................................................................3 1.4. UNIVERSIDAD(ES) ASOCIADA(S) .............................................................................................................................3 1.5. COMPROMISO DEL RECTOR......................................................................................................................................3 1.6. LINEA DE APOYO Y MODALIDAD............................................................................................................................4 1.7. UNIDAD RESPONSABLE DEL PROYECTO (URP)....................................................................................................4 1.8. URP ASOCIADAS ..........................................................................................................................................................4