Chapter 1: Introduction and Geologic Setting…………………………………… 1 Introduction to the Los Frailes Ignimbrite Complex……………………
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plateau-Style Accumulation of Deformation: Southern Altiplano
TECTONICS, VOL. 24, TC4020, doi:10.1029/2004TC001675, 2005 Plateau-style accumulation of deformation: Southern Altiplano Kirsten Elger, Onno Oncken, and Johannes Glodny GeoForschungsZentrum Potsdam, Potsdam, Germany Received 5 May 2004; revised 17 December 2004; accepted 23 March 2005; published 31 August 2005. [1] Employing surface mapping of syntectonic during the Paleogene, initially reactivating crustal sediments, interpretation of industry reflection- weak zones and by thermal weakening of the crust seismic profiles, gravity data, and isotopic age dating, with active magmatism mainly in the Neogene stage. we reconstruct the tectonic evolution of the southern Citation: Elger, K., O. Oncken, and J. Glodny (2005), Plateau- Altiplano (20–22°S) between the cordilleras style accumulation of deformation: Southern Altiplano, Tectonics, defining its margins. The southern Altiplano crust 24, TC4020, doi:10.1029/2004TC001675. was deformed between the late Oligocene and the late Miocene with two main shortening stages in the Oligocene (33–27 Ma) and middle/late Miocene 1. Introduction (19–8 Ma) that succeeded Eocene onset of shortening at the protoplateau margins. Shortening [2] Although considerable advance has been made in recent years in understanding the processes involved in rates in the southern Altiplano ranged between 1 and the formation of orogenic plateaus, the precise temporal 4.7 mm/yr with maximum rates in the late Miocene. and spatial patterns of uplift and lateral progradation of Summing rates for the southern Altiplano and the -
Iurep Orientation Phase Mission
INTERNATIONAL URANIUM RESOURCES EVALUATION PROJECT OECD INTERNATIONAL NUCLEAR ENERGY AGENCY VJ ATOMIC ENERGY AGENCY PARIS, FRANCE f/j VIENNA, AUSTRIA IUREP ORIENTATION PHASE MISSION Summary Report BOLIVIA A summary report prepared on behalf of the Executive Group for the IUREP Orientation Phase IUREP ORIENTATION PHASE MISSION Summary Report BOLIVIA A summary report prepared on behalf of the Executive Group for the IUREP Orientation Phase THE OECD NUCLEAR ENERGY AGENCY 38, Boulevard Suchet, F-75016 Paris (France) The OECD Nuclear Energy Agency (NEA) was established on 20th April 1972, replacing the OECD's European Nuclear Agency (ENEA). NEA now groups all the European Member countries of OECD with Australia, Canada, Japan and the United States. The Commission of the European Communities and the International Atomic Energy Agency take part in the Agency's work. The main aims of the NEA are to promote cooperation between Member governments in the safety and regulatory aspects of nuclear power and in the development of nuclear energy as a contributor to economic progress. This is achieved by: - encouraging the harmonisation of governments' regulatory policies and practices; - reviewing technical and economic aspects of the nuclear fuel cycle; - assessing demand and supply, and forecasting the potential contribution of nuclear power to energy demand; - exchanging scientific and technical information; and - coordinating and supporting research and development programmes, notably through the setting up of joint projects. INTERNATIONAL ATOMIC ENERGY AGENCY Wagramerstrasse 5, A-1400 Vienna (Austria) The International Atomic Energy Agency (IAEA) came into being in Vienna, Austria, on 29 July 1957. Its main objectives are to "seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world" and to "ensure, so far as it is able, that assistance provided by it or at its request or under its supervision or control is not used in such a way as to further any military purpose". -
Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5. -
Silver Sand Project, Potosí Department, Bolivia
Silver Sand Project, Potosí Department, Bolivia Technical Report for: April 6, 2017 Prepared by or under the Supervision of: Donald J. Birak A Qualified Person as defined by Canadian National Instrument 43-101 Registered Member, Society for Mining, Metallurgy and Exploration (SME) Fellow, Australasian Institute of Mining and Metallurgy (AusIMM) Silver Sand Project, Bolivia 1 Table of Contents Page List of Tables ............................................................................................................... 3 List of Figures .............................................................................................................. 3 Section 1: Summary .................................................................................................... 5 Section 2: Introduction ................................................................................................ 9 Section 3: Reliance on Other Experts ......................................................................... 10 Section 4: Property Description and Location ............................................................ 11 Section 5: Accessibility, Climate, Local Resources, Infrastructure and Physiography ... 17 Section 6: History ...................................................................................................... 19 Section 7: Geological Setting and Mineralization ....................................................... 21 Section 8: Deposit Types .......................................................................................... -
Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith. -
Proyecto Completo (.Pdf, 503
1 PROGRAMA MECESUP PROGRAMA NACIONAL DE DOCTORADO EN CIENCIAS MENCION GEOLOGIA UNIVERSIDAD DE CHILE + UNIVERSIDAD CATOLICA DEL NORTE LINEA DE APOYO AL POSTGRADO CODIGO UCH 0010 PROYECTO REFORMULADO DICIEMBRE DE 2000 2 TABLA DE CONTENIDO 1. PRESENTACION DEL PROYECTO...................................................................................................................................3 1.1. TITULO ...........................................................................................................................................................................3 1.2. TIPO DE PROYECTO.....................................................................................................................................................3 1.3. UNIVERSIDAD RESPONSABLE DEL PROYECTO....................................................................................................3 1.4. UNIVERSIDAD(ES) ASOCIADA(S) .............................................................................................................................3 1.5. COMPROMISO DEL RECTOR......................................................................................................................................3 1.6. LINEA DE APOYO Y MODALIDAD............................................................................................................................4 1.7. UNIDAD RESPONSABLE DEL PROYECTO (URP)....................................................................................................4 1.8. URP ASOCIADAS ..........................................................................................................................................................4 -
RESEARCH Geochemistry and 40Ar/39Ar
RESEARCH Geochemistry and 40Ar/39Ar geochronology of lavas from Tunupa volcano, Bolivia: Implications for plateau volcanism in the central Andean Plateau Morgan J. Salisbury1,2, Adam J.R. Kent1, Néstor Jiménez3, and Brian R. Jicha4 1COLLEGE OF EARTH, OCEAN, AND ATMOSPHERIC SCIENCES, OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331, USA 2DEPARTMENT OF EARTH SCIENCES, DURHAM UNIVERSITY, DURHAM DH1 3LE, UK 3UNIVERSIDAD MAYOR DE SAN ANDRÉS, INSTITUTO DE INVESTIGACIONES GEOLÓGICAS Y DEL MEDIO AMBIENTE, CASILLA 3-35140, LA PAZ, BOLIVIA 4DEPARTMENT OF GEOSCIENCE, UNIVERSITY OF WISCONSIN–MADISON, MADISON, WISCONSIN 53706, USA ABSTRACT Tunupa volcano is a composite cone in the central Andean arc of South America located ~115 km behind the arc front. We present new geochemical data and 40Ar/39Ar age determinations from Tunupa volcano and the nearby Huayrana lavas, and we discuss their petrogenesis within the context of the lithospheric dynamics and orogenic volcanism of the southern Altiplano region (~18.5°S–21°S). The Tunupa edifice was constructed between 1.55 ± 0.01 and 1.40 ± 0.04 Ma, and the lavas exhibit typical subduction signatures with positive large ion lithophile element (LILE) and negative high field strength element (HFSE) anomalies. Relative to composite centers of the frontal arc, the Tunupa lavas are enriched in HFSEs, particularly Nb, Ta, and Ti. Nb-Ta-Ti enrichments are also observed in Pliocene and younger monogenetic lavas in the Altiplano Basin to the east of Tunupa, as well as in rear arc lavas elsewhere on the central Andean Plateau. Nb concentrations show very little variation with silica content or other indices of differentiation at Tunupa and most other central Andean composite centers. -
A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish. -
Uplift of the Central Andean Plateau and Bending of the Bolivian Orocline
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 93, NO. B4, PAGES 3211-3231, APRIL 10, 1988 Uplift of the CentralAndean Plateau and Bending of the BolivianOrocline BRYAN L. ISACKS INSTOCCornell Andes Project, Department ofGeological Sciences, Cornell University, Ithaca, New York Thetopography of thecentral Andes can be consideredthe primary tectonic "signal" of lateCenozoic mountainbuilding in anarid region where the effects of upliftand magrnatism arelitfie obscured by denudation. Thespatial coverage ofthe topographic signal is more complete than that for sparsely sampled geological and geophysicaldata. A color-codedimage of digitizedtopography between 12øS and 37øS highlights the Altiplano-Puna,oneof theworld's most remarkable plateaus, and reveals important physiographic clues about theformation ofthat major feature. The topographic data combined with information onstructure, magmatism, seismicity,and palcomagnetism support a simplekinematical model for thelate Cenozoic evolution of the centralAndes. The model does not require collisional effects or enormousvolumes of intrusiveadditions to the crustbut instead calls upon plausible amounts of crustalshortening and lithospheric thinning. The model interrelatesAndean uplift, a changinggeometry ofthe subdueted Nazca plate, and a changingoutline (in map view)of theleading edge of theSouth American plate. Crustal shortening has accommodated convergence betweenthe Chilean-Peruvian forearc and the South American foreland. The Altiplano-Puna plateau can be constructedby a combinationof crustalshortening -
Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5. -
Geological Society of America Bulletin
Downloaded from gsabulletin.gsapubs.org on February 6, 2012 Geological Society of America Bulletin 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province Morgan J. Salisbury, Brian R. Jicha, Shanaka L. de Silva, Brad S. Singer, Néstor C. Jiménez and Michael H. Ort Geological Society of America Bulletin 2011;123, no. 5-6;821-840 doi: 10.1130/B30280.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. -
Geocronología Y Características Geoquímicas De Un Conjunto De Domos Riolíticos Terciarios En El Campo Volcánico De San Luis Potosí, México
1 Geocronología y característicasBoletín de la geoquímicas Sociedad Geológica de un conjunto Mexicana de domos riolíticos terciarios Volumen 66, núm. 1, 2014, p. ###-### D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Geocronología y características geoquímicas de un conjunto de domos riolíticos terciarios en el Campo Volcánico de San Luis Potosí, México José Ramón Torres-Hernández1,*, Claus Siebe-Grabach2, Alfredo Aguillón-Robles1, Rodolfo Rodríguez-Ríos3, † 1 Instituto de Geología/DES Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #5, Zona Universitaria, 78240, San Luis Potosí, S.L.P. México. 2 Departamento de Vulcanología, Instituto de Geofísica. Universidad Nacional Autónoma de México, Ciudad Universitaria. C.P. 04510. Coyoacán, México, D.F. 3 Facultad de Ingeniería /DES Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #8, Zona Universitaria, 78240, San Luis Potosí, S.L.P. México. * [email protected] galera Resumen En el Campo Volcánico de San Luis Potosí (CVSLP) existen dos rasgos tectónicos de forma semicircular. En el menor de ellos están emplazados una serie de domos riolíticos que presentan mineralización de topacio y casiterita. Las características químicas de las lavas que forman los domos incluyen contenido elevado de SiO (>75 % en peso), Al O (11-13 % en peso), Na O+K O (7.5-9.0 % de2 2 3 2 2 en peso) y bajo CaO (< 1 % en peso), MgO y TiO2 (< 0.15 % en peso). Estas lavas se caracterizan por su proporción elevada de K2O/ Na2O (1.22 - 2.48), por tener mineralización de estaño y alto contenido de flúor, lo cual es evidenciado megascópicamente por la mineralización de topacio.