Determination of the H2O Content in Minerals, Especially Zeolites, from Their Refractive Indices Based on Mean Electronic Polarizabilities of Cations

Total Page:16

File Type:pdf, Size:1020Kb

Determination of the H2O Content in Minerals, Especially Zeolites, from Their Refractive Indices Based on Mean Electronic Polarizabilities of Cations Eur. J. Mineral., 32, 27–40, 2020 https://doi.org/10.5194/ejm-32-27-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Determination of the H2O content in minerals, especially zeolites, from their refractive indices based on mean electronic polarizabilities of cations Reinhard X. Fischer1, Manfred Burianek1, and Robert D. Shannon2 1FB 5 Geowissenschaften, Universität Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany 2Geological Sciences/CIRES, University of Colorado, Boulder, Colorado 80309, USA Correspondence: Reinhard X. Fischer (rfi[email protected]) Received: 10 September 2019 – Revised: 14 October 2019 – Accepted: 28 October 2019 – Published: 15 January 2020 Abstract. It is shown here that the H2O content of hydrous minerals can be determined from their mean re- fractive indices with high accuracy. This is especially important when only small single crystals are avail- able. Such small crystals are generally not suitable for thermal analyses or for other reliable methods of measuring the amount of H2O. In order to determine the contribution of the H2O molecules to the opti- cal properties, the total electronic polarizability is calculated from the anhydrous part of the chemical com- position using the additivity rule for individual electronic polarizabilities of cations and anions. This an- hydrous contribution is then compared with the total observed electronic polarizability calculated from the mean refractive index of the hydrous compound using the Anderson–Eggleton relationship. The difference be- tween the two values represents the contribution of H2O. The amount can be derived by solving the equation 0 N 1 − j × C 1:2 1:2 .nj nW / D P C P o × Vm C × αcalc niαicat @αj 10 A nw αW for the number nw of H2O molecules per for- i j o mula unit (pfu), with the electronic polarizabilities αcat for cations, the values N and α describing the anion 3 polarizabilities, the number n of cations and anions, and the molar volume Vm, using a value of αW D 1:62 Å for the electronic polarizability of H2O. The equation is solved numerically, yielding the number nw of H2O molecules per formula unit. The results are compared with the observed H2O content evaluating 157 zeolite-type compounds and 770 non-zeolitic hydrous compounds, showing good agreement. This agreement is expressed by a factor relating the calculated to the observed numbers being close to 1 for the majority of compounds. Zeolites with occluded anionic or neutral species (SO3, SO4, CO2, or CO3) show unusually high deviations between the calculated and observed amount of H2O, indicating that the polarizabilities of these species should be treated differently in zeolites and zeolite-type compounds. 1 Introduction croprobe analyses (EMPA) or analytical transmission elec- tron microscopy (ATEM), on species with a size of a few The water content of hydrous minerals and synthetic com- microns, thermoanalytical methods for the determination of pounds is usually determined by thermogravimetric methods the water content require an amount of a sample in the range recording the weight loss upon dehydration at an increasing of a few milligrams. The same applies to carbon hydrogen temperature. If the chemical composition of the anhydrous and nitrogen (CHN) analyzers which usually need a few mil- part of the compound is known, its formula weight can be ligrams for accurate analyses. Alternatively, the H2O content calculated along with the number of H2O molecules repre- could be derived from the measured density if the specimen senting the weight loss. Whereas the cation content can be is big enough for the experimental determination of the den- derived from microchemical analyses, e.g., by electron mi- sity. The determination of the water content becomes less ac- Published by Copernicus Publications on behalf of the European mineralogical societies DMG, SEM, SIMP & SFMC. 28 R. X. Fischer et al.: Determination of H2O content in minerals curate if lower amounts or even just one single crystal with a ing the Anderson–Eggleton relationship (Anderson, 1975; size of about 100 µm and a mass of a few micrograms or less Eggleton, 1991; see Shannon and Fischer, 2016, for an ex- exists. planation): It is well known that the optical properties vary with the 2 − amount of H2O in a crystalline compound. We mention n 1 Vm αobs D ; (1) two examples: Hey and Bannister (1932a) studied the ef- 4π C 4π − 2:26 n2 − 1 fect of dehydration on the optical properties of natrolite, and 3 Medenbach et al. (1980) investigated the variation in the re- with the molar volume Vm of one formula unit. fractive index of synthetic Mg-cordierite with H2O content, The total electronic polarizability of the anhydrous com- finding a linear relationship between the mean refractive in- pound can be calculated from the sum of the individual ion dex and the weight fraction of H2O. All studies we know so contributions (Shannon and Fischer, 2016) according to far are empirical descriptions of the dependence of the re- fractive indices on the H O content derived by calibration Ncat Nan 2 X X curves for a special system of compounds. Here, we describe αcalc D mi × αicat C ni × αian; (2) D D a theoretical approach for determining the H2O content from i 1 i 1 mean refractive indices of compounds with known chemical with composition of the anhydrous part. We show that the number 1:2 of H O molecules per formula unit (pfu) can be determined o −No=Van 2 αan D α− × 10 ; (3) with high accuracy from the mean refractive indices of hy- o drous crystals. where αcat is taken from Table 4 and α− and No from Table 5 A special focus is on the zeolite group of minerals, repre- in Shannon and Fischer (2016), and the anion volume Van is senting a large and popular group of hydrous minerals. Ze- calculated from the molar volume Vm divided by the number olites represent one of the most important classes of mate- of anions and H2O molecules. rials, used as catalysts in oil refineries for the production of The difference between observed and calculated polariz- gasoline and as ion exchangers as an additive, e.g., in house- abilities 1 D (αobs −αcalc/ is due to the contribution of H2O. hold detergents for the softening of water. Following the def- However, 1 cannot be simply divided by the electronic po- 3 inition of the subcommittee on zeolites of the International larizability 1.62 Å of H2O because it is treated like an anion Mineralogical Association (Coombs et al., 1998), “A zeolite and not like a cation (Shannon and Fischer, 2016). There- mineral is a crystalline substance with a structure character- fore, the number nw of H2O molecules has an influence on ized by a framework of linked tetrahedra, each consisting the calculation of the anion volume Van in Eq. (3), so it is of four O atoms surrounding a cation. This framework con- needed to calculate the contribution of the anions even for tains open cavities in the form of channels and cages. These the anhydrous part of the compound. are usually occupied by H2O molecules and extra-framework If we combine Eqs. (2) and (3) and separate the contribu- cations that are commonly exchangeable”. tion of H2O from the other anions, we get h N i − j × C 1:2 X X o V .nj nW / αcalc D niαicat C αj × 10 2 Theoretical background i j Our approach is based on the fact that the total electronic C nw × αW ; (4) polarizability of a mineral or synthetic compound can be with V D V 1:2, the number n of H O molecules per for- calculated from the sum of the individual contributions of m w 2 mula unit, and the electronic polarizability α D 1:62 Å3 of the electronic polarizabilities α of cations and α of the W cat an H O. anions, following the procedure described by Shannon and 2 Replacing α in Eq. (4) by α from Eq. (1) and solving Fischer (2016). Thus, the total polarizability of the anhydrous calc obs for n yields the number of H O molecules per formula unit. compound can be calculated from the chemical composition w 2 The solution is done numerically using the program PO- which then can be compared with the total polarizability de- LARIO (Fischer et al., 2018). rived from the observed mean refractive indices of the hy- drous compound. The difference represents the contribution of the H2O molecules. To obtain the H2O content, refrac- 3 Dataset tive indices are measured, e.g., by immersion methods with a spindle stage on a petrographic microscope. Anisotropic in- We tested the approach on hydrous minerals with known dices are averaged according to .nx C ny C nz/=3 or .2no C chemical composition, water content, and refractive indices, ne/=3, yielding the mean refractive index <n>. taken from Table S1 in Shannon et al. (2017) and addi- The total observed polarizability of the hydrous compound tional entries compiled here. The group of zeolite minerals is then calculated from the mean refractive index <n> us- is treated separately because it represents one of the most Eur. J. Mineral., 32, 27–40, 2020 www.eur-j-mineral.net/32/27/2020/ www.eur-j-mineral.net/32/27/2020/ Eur. J. Mineral., 32, 27–40, 2020 R. X. Fischer et al.: Determination of H Table 1. Entries of zeolite-type compounds used for the comparison of observed and calculated H2O content. b h No. Zeolite Chem. <n> Vm αobs nw nw nw (obs)/ References a 3 c 3 d e f g name composition (Å / (Å / (obs) (calc) nw (calc) 1 Amicite K3:75Na3:61Ca0:05Al7:86Si8:24O32 · 9:67H2O 1.498 1052.94 87.524 9.67 13.58 0.71 Alberti et al.
Recommended publications
  • The Regional Distribution of Zeolites in the Basalts of the Faroe Islands and the Significance of Zeolites As Palaeo- Temperature Indicators
    The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as palaeo- temperature indicators Ole Jørgensen The first maps of the regional distribution of zeolites in the Palaeogene basalt plateau of the Faroe Islands are presented. The zeolite zones (thomsonite-chabazite, analcite, mesolite, stilbite-heulandite, laumontite) continue below sea level and reach a depth of 2200 m in the Lopra-1/1A well. Below this level, a high temperature zone occurs characterised by prehnite and pumpellyite. The stilbite-heulan- dite zone is the dominant mineral zone on the northern island, Vágar, the analcite and mesolite zones are the dominant ones on the southern islands of Sandoy and Suðuroy and the thomsonite-chabazite zone is dominant on the two northeastern islands of Viðoy and Borðoy. It is estimated that zeolitisa- tion of the basalts took place at temperatures between about 40°C and 230°C. Palaeogeothermal gradients are estimated to have been 66 ± 9°C/km in the lower basalt formation of the Lopra area of Suðuroy, the southernmost island, 63 ± 8°C/km in the middle basalt formation on the northernmost island of Vágar and 56 ± 7°C/km in the upper basalt formation on the central island of Sandoy. A linear extrapolation of the gradient from the Lopra area places the palaeosurface of the basalt plateau near to the top of the lower basalt formation. On Vágar, the palaeosurface was somewhere between 1700 m and 2020 m above the lower formation while the palaeosurface on Sandoy was between 1550 m and 1924 m above the base of the upper formation.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations Among Thomsonites Gonnardites, and Natrolites
    r-'1 ~ Q I ~ c lt') ~ r-'1 'JJ ~ Q.) < ~ ~ ......-~ ..,.;;j ~ <z 0 0 Q.) 1-4 rJ:J rJ:J N r-'1 ~ Q.) 0 ~ ..c ~ ~ ~ I r-'1 ~ > ~ 0 I ~ rJ:J 'JJ ..,.;;j Q.) < .....-~ 0 . 1-4 ~ C"-' 0 ~ ..,.;;j ~ 0 r-'1 00 C"-' Foster-STUDIES•. OF THE ZEOLITES-Geological Survey Professional Paper 504-D, E Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations among Thomsonites Gonnardites, and Natrolites By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 504-D, E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretory GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Foster, Margaret Dorothy, 1895- Studies of the zeolites. D. Composition of zeolites of the natrolite group. E. Compositional relations among thom­ sonites, gonnardites, and natrolites. Washington, U.S. Govt. Print. Off., 1965. v, 7; iii, 10 p. diagrs., tables. 30 em. (U.S. Geological Survey. Professional paper 504-D, E) Shorter contributions to general geology. Each part also has separate title page. Includes bibliographies. (Continued on next card) Foster, Margaret Dorothy, 1895- Studies of the zeolites. 1965. (Card 2) 1. Zeolites. I. Title. II. Title: Composition of zeolites of the natro­ lite group. III. Title: Compositional relations among thomsonites, gonnardites, and natrolites. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents (paper cover) Studies of the Zeolites Composition of Zeolites of the N atrolite Group By MARGARET D.
    [Show full text]
  • The Thermal Dehydration of Natural Zeolites
    549.67:536.4 MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 74-9 (1974) THE THERMAL DEHYDRATION OF NATURAL ZEOLITES (with a summary in Dutch) L. P. VAN REEUWIJK Department of Soil Science and Geology, Agricultural University, Wageningen, The Netherlands (Received 11-11-1974) H. VEENMAN & ZONEN B.V. - WAGENINGEN - 1974 Ml Mededelingen Landbouwhogeschool Wageningen 74-9 (1974) (Communications Agricultural University) is also published as a thesis CONTENTS 1. INTRODUCTION 1 1.1. History 1 1.2. Genesis and occurrence of natural zeolites 2 1.3. Structural classification 4 1.4. Practical applications of zeolites 8 2. THE DEHYDRATION OF ZEOLITES - A CRITICAL REVIEW 11 2.1. Introduction 11 2.2. DTA and TG 12 2.3. High temperature X-ray analysis 13 2.4. Vapour pressure 14 2.5. The reaction mechanism 15 2.6. Rehydration 16 3. THE COMPLEXITY OF THE DEHYDRATION PROCESS 17 3.1. Types of dehydration 17 3.2. Examples 18 3.3. Effect of pressure on dehydration 22 3.3.1. Qualitative aspect 22 3.3.2. Quantitative aspect - Calibration of pressure 25 3.4. Dehydration equilibrium and hysteresis 26 3.5. Internal and external adsorption 28 4. DEHYDRATION OF ZEOLITES OF THE NATROLITE GROUP 30 4.1. Materials and procedures 30 4.2. Results and discussion 31 4.2.1. Natrolite 31 4.2.2. Mesolite 33 4.2.3. Scolecite 36 4.2.4. Thomsonite 37 4.2.5. Gonnardite 37 4.2.6. Edingtonite 38 4.3. Conclusions 39 5. PRESSURE-TEMPERATURE RELATIONS 40 5.1. The Clausius-Clapeyron equation 41 5.2. Experimental 43 5.3.
    [Show full text]
  • Gonnardite Na2caal4si6o20 ² 7H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Tetragonal
    Gonnardite Na2CaAl4Si6O20 ² 7H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Tetragonal. Point Group: 42m: Fibrous crystals, at the centers of radiating spherulites, to 3 cm; massive. Physical Properties: Hardness = 5 D(meas.) = 2.25{2.36 D(calc.) = 2.33 Optical Properties: Translucent. Color: White, yellowish to salmon-red. Luster: Silky. Optical Class: Biaxial (+) or ({); commonly zoned. Orientation: X = c. ® = 1.497{1.508 ¯ = 1.498{1.510 ° = 1.499{1.513 2V(meas.) = 50± Cell Data: Space Group: I42d: a = 13.21(1) c = 6.622(4) Z = 2 X-ray Powder Pattern: Chaux de Bergonne, France; may be confused with natrolite and tetranatrolite. 2.92 (100), 5.93 (80), 6.70 (60), 4.44 (60), 4.74 (50), 3.23 (50), 3.12 (40) Chemistry: (1) (2) (3) SiO2 43.45 43.20 44.58 Al2O3 27.91 27.90 25.22 CaO 6.95 3.61 6.94 Na2O 8.69 13.16 7.66 H2O [13.00] 11.74 15.60 Total [100.00] 99.61 100.00 (1) Chaux de Bergonne, France; by electron microprobe, H2O by di®erence; corresponding to Na2:22Ca0:98Al4:32Si5:71O20 ² 5:70H2O: (2) Aci Trezza, Sicily, Italy; corresponds to Na3:5Ca0:5Al4:5 Si5:9O20:8 ² 5:35H2O: (3) Na2CaAl4Si6O20 ² 7H2O: Mineral Group: Zeolite group. Occurrence: In cavities in basalt, leucite tephrite, and altered skarn. Association: Zeolites, calcite. Distribution: Well characterized material from: in France, at Chaux de Bergonne, Gignat, Puy de D^ome. In Italy, from Capo di Bove, near Rome, Lazio; and at Aci Castello, Aci Trezza, Osilo, and other places on Sardinia.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Geology of Greenland Survey Bulletin 190, 25-33
    List of all minerals identified in the Ilímaussaq alkaline complex, South Greenland Ole V. Petersen About 220 minerals have been described from the Ilímaussaq alkaline complex. A list of all minerals, for which proper documentation exists, is presented with formulae and references to original publications. The Ilímaussaq alkaline complex is the type locality for 27 minerals including important rock-forming minerals such as aenigmatite, arfvedsonite, eudialyte, poly- lithionite, rinkite and sodalite. Nine minerals, chalcothallite, karupmøllerite-Ca, kvanefjeldite, nabesite, nacareniobsite-(Ce), naujakasite, rohaite, semenovite and sorensenite appear to be unique to the Ilímaussaq complex. Geological Museum, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark. E-mail: [email protected] Keywords: agpaite, Ilímaussaq, mineral inventory, minerals type locality The agpaitic complexes Ilímaussaq (South Greenland), world. Most of the minerals for which Ilímaussaq is Khibina and Lovozero (Kola Peninsula, Russia), and the type locality have later been found in other com- Mont Saint-Hilaire (Quebec, Canada) are among the plexes of agpaitic rocks. areas in the world which are richest in rare minerals. Two minerals were described simultaneously from About 700 minerals have been found in these com- Ilímaussaq and the Kola Peninsula, tugtupite and vi- plexes which hold the type localities for about 200 tusite. Tugtupite was published from the Lovozero minerals. complex by Semenov & Bykova (1960) under the name About 220 minerals have been found in the Ilímaus- beryllosodalite and from Ilímaussaq by Sørensen (1960) saq complex of which 27 have their type localities under the preliminary name beryllium sodalite which within the complex. In comparison Khibina and Lov- was changed to tugtupite in later publications (Søren- ozero hold the type localities for 127 minerals (Pekov sen 1962, 1963).
    [Show full text]
  • 10Са9(Fе3+,Fе2+)
    Расцветаева Р. К., Пущаровский Д Ю., Виноградова Р. А. , Леков И. В. Кристаллическая структу- ра дашкесанита // Кристаллография. 1996. Т. 41. ](2 1. С. 65-69. Чуканов Н. В., Конилов А. Н., Задов А. Е., Белаковский Д и., Леков И. В. НОВЫЙ амфибол калие- вый хлоропаргасит и условия его формирования в гранулитовом комплексе Сальных тундр (Кольский полуостров) // ЗВМО. 2002. N~2. С. 58-61. Burke Е. А. J, Leake В. Е. «Named Amphiboles», а new category of amphiboles recognized Ьу the [гпег- national Mineralogical Association (lMA) and the ргорег order of prefixes to Ье used in amphibole names /1 Canad. Miner. 2004. Yol. 42. Р. 1881-1883. Jacobson S. S. Dashkesanite: high-chlorine amphibole from St. Paul's rock, Equatorial Atlantic and Transcaucasia, USSR 11 Smithson. Contrib. Earth Sci. 1975. Yol. 14. Р. 17-20. Leake В. Е. Nomenclature of amphiboles 11Amer. Мшег, 1978. Уоl. 63. Р. 1025-1052. Leake В. Е. е. а. Nomenclature ofamphiboles: Report ofthe subcommittee оп amphiboles ofthe Intemati- опа! Mineralogical Association, Commission оп New Minerals and Mineral Names 11Canad. Miner. 1997. Уоl. 35. Р. 219-246. Leake В. Е. е. а. Nomenclature of amphiboles: additions and revisions to the Intemational Mineralogical Association's amphibole nomenclature 11Canad. Miner. 2003. Yol. 41. Р. 1355-1362. Nickel Е. н., Mandarino J. А. Procedures involving the IMA Commission оп New Minerals and Mineral Names, and guidelines оп mineral nomenclature 11 Canad. Miner. 1987. Уо1. 25. Р. 353-377. Oberti R., Ungaretti L., СаnnШо Е., Hawthorne F. С. The mechanism of chlor incorporation in атпрпйю- lе 11Amer. Miner. 1993. Yol. 78.
    [Show full text]
  • Use of Local Minerals in the Treatment of Radioactive Waste
    O = 0(0H) •=Si(AI) O = 0(0H) # = AI, Mg, Fe, etc. TECHNICAL REPORTS SERIES No. 136 Use of Local Minerals in the Treatment of Radioactive Waste INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1972 USE OF LOCAL MINERALS IN THE TREATMENT OF RADIOACTIVE WASTE The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PAKISTAN ALBANIA HAITI PANAMA ALGERIA HOLY SEE PARAGUAY ARGENTINA HUNGARY PERU AUSTRALIA ICELAND PHILIPPINES AUSTRIA INDIA POLAND BELGIUM INDONESIA PORTUGAL BOLIVIA IRAN ROMANIA BRAZIL IRAQ SAUDI ARABIA BULGARIA IRELAND SENEGAL BURMA ISRAEL SIERRA LEONE BYELORUSSIAN SOVIET ITALY SINGAPORE SOCIALIST REPUBLIC IVORY COAST SOUTH AFRICA CAMEROON JAMAICA SPAIN CANADA JAPAN SUDAN CEYLON JORDAN SWEDEN CHILE KENYA SWITZERLAND CHINA KHMER REPUBLIC SYRIAN ARAB REPUBLIC COLOMBIA KOREA, REPUBLIC OF THAILAND COSTA RICA KUWAIT TUNISIA CUBA LEBANON TURKEY CYPRUS LIBERIA UGANDA CZECHOSLOVAK SOCIALIST LIBYAN ARAB REPUBLIC UKRAINIAN SOVIET SOCIALIST REPUBLIC LIECHTENSTEIN REPUBLIC DENMARK LUXEMBOURG UNION OF SOVIET SOCIALIST DOMINICAN REPUBLIC MADAGASCAR REPUBLICS ECUADOR MALAYSIA UNITED KINGDOM OF GREAT EGYPT, ARAB REPUBLIC OF MALI BRITAIN AND NORTHERN EL SALVADOR MEXICO IRELAND ETHIOPIA MONACO UNITED STATES OF AMERICA FINLAND MOROCCO URUGUAY FRANCE NETHERLANDS VENEZUELA GABON NEW ZEALAND VIET-NAM GERMANY, FEDERAL REPUBLIC OF NIGER YUGOSLAVIA GHANA NIGERIA ZAIRE, REPUBLIC OF GREECE NORWAY ZAMBIA The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957, The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".
    [Show full text]
  • Combined Single-Crystal X-Ray and Neutron Powder Diffraction Structure
    American Mineralogist, Volume 95, pages 519–526, 2010 Combined single-crystal X-ray and neutron powder diffraction structure analysis exemplified through full structure determinations of framework and layer beryllate minerals JENNIFER A. ARMSTRONG ,1 HENRIK FRIIS,2 ALEX A NDR A LIEB ,1,* ADRI A N A. FINC H ,2 A ND MA RK T. WELLER 1,† 1School of Chemistry, University of Southampton, Highfield, Southampton, Hampshire SO17 1BJ, U.K. 2School of Geography and Geosciences, Irvine Building, University of St. Andrews, North Street, St. Andrews, Fife KY16 9AL, U.K. ABSTR A CT Structural analysis, using neutron powder diffraction (NPD) data on small quantities (<300 mg) and in combination with single-crystal X-ray diffraction (SXD) data, has been employed to determine accurately the position of hydrogen and other light atoms in three rare beryllate minerals, namely bavenite, leifite/IMA 2007-017, and nabesite. For bavenite, leifite/IMA 2007-017, and nabesite, sig- nificant differences in the distribution of H, as compared to the literature using SXD analysis alone, have been found. The benefits of NPD data, even with small quantities of H-containing materials, and, more generally, in applying a combined SXD-NPD method to structure analysis of minerals are discussed, with reference to the quality of the crystallographic information obtained. Keywords: Hydrogen, beryllium, minerals, powder neutron diffraction INTRODUCTION lower cation charge, Be2+ vs. Si4+. Thus, a bridging or terminal Information on crystal structure of minerals, including the O forming part of a Beϕ4 tetrahedron is under-bonded compared localization of light atoms such as H and Be, is of considerable to the equivalent Siφ4 unit leading to the prevalence of Be-OH importance because it allows a better understanding of the min- and Be-F in beryllate minerals (Hawthorne and Huminicki eral behavior under natural conditions.
    [Show full text]
  • Mineralogy and Crystal Structures of Barium Silicate Minerals
    MINERALOGY AND CRYSTAL STRUCTURES OF BARIUM SILICATE MINERALS FROM FRESNO COUNTY, CALIFORNIA by LAUREL CHRISTINE BASCIANO B.Sc. Honours, SSP (Geology), Queen's University, 1998 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Earth and Ocean Sciences) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 1999 © Laurel Christine Basciano, 1999 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of !PcX,rU\ a^/icJ OreO-^ Scf&PW The University of British Columbia Vancouver, Canada Date OeC S/79 DE-6 (2/88) Abstract The sanbornite deposits at Big Creek and Rush Creek, Fresno County, California are host to many rare barium silicates, including bigcreekite, UK6, walstromite and verplanckite. As part of this study I described the physical properties and solved the crystal structures of bigcreekite and UK6. In addition, I refined the crystal structures of walstromite and verplanckite. Bigcreekite, ideally BaSi205-4H20, is a newly identified mineral species that occurs along very thin transverse fractures in fairly well laminated quartz-rich sanbornite portions of the rock.
    [Show full text]
  • GEUS No 190.Pmd
    G E O L O G Y O F G R E E N L A N D S U R V E Y B U L L E T I N 1 9 0 · 2 0 0 1 The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results Edited by Henning Sørensen Contributions to the mineralogy of Ilímaussaq, no. 100 Anniversary volume with list of minerals GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF THE ENVIRONMENT 1 Geology of Greenland Survey Bulletin 190 Keywords Agpaite, alkaline, crystallography, Gardar province, geochemistry, hyper-agpaite, Ilímaussaq, mineralogy, nepheline syenite, peral- kaline, Mesoproterozoic, rare-element minerals, South Greenland. Cover Igneous layering in kakortokites in the southern part of the Ilímaussaq alkaline complex, South Greenland. The central part of the photograph shows the uppermost part of the layered kakortokite series and the overlying transitional kakortokites and aegirine lujavrite on Laksefjeld (680 m), the dark mountain in the left middle ground of the photograph. The cliff facing the lake in the right middle ground shows the kakortokite layers + 4 to + 9. The kakortokite in the cliff on the opposite side of the lake is rich in xenoliths of roof rocks of augite syenite and naujaite making the layering less distinct. On the skyline is the mountain ridge Killavaat (‘the comb’), the highest peak 1216 m, which is made up of Proterozoic granite which was baked and hardened at the contact to the intrusive complex. The lake (987 m) in the foreground is intensely blue and clear because it is practically devoid of life.
    [Show full text]