Antioxidant, Anti-Inflammatory, Anti-Radiation, Metal Chelating Compounds and Uses Thereof

Total Page:16

File Type:pdf, Size:1020Kb

Antioxidant, Anti-Inflammatory, Anti-Radiation, Metal Chelating Compounds and Uses Thereof (19) TZZ¥_ ___T (11) EP 3 121 189 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 25.01.2017 Bulletin 2017/04 C07K 5/023 (2006.01) A61K 38/07 (2006.01) A61P 17/00 (2006.01) A61P 25/00 (2006.01) (21) Application number: 16162206.3 (22) Date of filing: 19.01.2012 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • MOGRABI, Josef GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 69379 Tel Aviv (IL) PL PT RO RS SE SI SK SM TR • ATLAS, Daphne 93714 Jerusalem (IL) (30) Priority: 20.01.2011 US 201161434454 P • KEYNAN, Shoshana 30.03.2011 US 201161469138 P 71702 Modiine (IL) (62) Document number(s) of the earlier application(s) in (74) Representative: Becker Kurig Straus accordance with Art. 76 EPC: Patentanwälte 12705459.1 / 2 665 742 Bavariastrasse 7 80336 München (DE) (27) Previously filed application: 19.01.2012 PCT/IL2012/000032 Remarks: This application was filed on 24-03-2016 as a (71) Applicants: divisional application to the application mentioned • Oneday - Biotech And Pharma Ltd. under INID code 62. 6789717 Tel Aviv (IL) • Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Jerusalem 91390 (IL) (54) ANTIOXIDANT, ANTI-INFLAMMATORY, ANTI-RADIATION, METAL CHELATING COMPOUNDS AND USES THEREOF (57) The present invention relates to potent compounds having combined antioxidant, antiinflammatory, anti-radiation and metal chelating properties. Specifically, the present invention relates to short peptides having said properties, and to methods and uses of such short peptides in clinical and cosmetic applications. EP 3 121 189 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 121 189 A1 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to potent compounds having combined antioxidant, anti-inflammatory, anti-radi- ation and metal chelating properties. More specifically, the present invention relates to short peptides having said prop- erties, and to methods and uses of such short peptides in clinical and cosmetic applications. BACKGROUND OF THE INVENTION 10 [0002] The normal functioning of biological systems requires, inter alia, proper balance between formation and elim- ination of damaging substances. Oxidative stress, for example, represents an imbalance between the levels of damaging oxidizing species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), in a biological system and the insufficient ability of that biological system to readily neutralize or eliminate the oxidizing species. Consequences 15 of this stress include but are not limited to deleterious modification to cellular proteins, lipids and DNA. [0003] Oxidative stress is associated with a wide range of diseases and other medical conditions, including for example Alzheimer’s disease, Parkinson’s disease, diabetes and pathologies secondary to diabetes, rheumatoid arthritis, neu- rodegeneration (particularly in motor neuron diseases), airway inflammation and hyper-responsiveness (for example, asthma), and some skin disorders, such as vitiligo. 20 [0004] In some of these cases, it is unclear whether the oxidative stress is the cause or the consequence of the medical condition. However, in many cases, lowering the oxidative stress leads to improvement in the disease manifestation. In many other cases, lowering the oxidative stress may prevent the disease outbreak. In addition to pathological conditions, oxidative stress is also known to be involved in some undesired components of aging. [0005] Thiol (-SH) containing compounds are a type of molecules capable of neutralizing several types of damaging 25 oxidative species, thus acting as reducing reagents. The activity of this group of compounds is mainly due to the sulfur atom they comprise which participates in nucleophilic attack on toxic electrophiles, scavenging free radicals, effecting repair of damaged targets through hydrogen atom donation, altering the redox status of the cell, or affecting gene transcription or protein function. [0006] Thiol containing compounds include natural molecules, produced by all living organisms including animals and 30 plants, as well as synthetic molecules. Examples of natural thiol containing antioxidants include glutathione, which is one of the most potent and important antioxidants in mammals, thioredoxins and cysteine. [0007] Examples of synthetic thiol containing redox molecules include N-acetylcysteine amide, as described, for ex- ample, in Atlas et al., (2005) Free Radic Biol Med, Vol. 38(1), pp. 136-45. Another example is N-acetyl-cysteine-proline- cysteine-amide (CB3), described, for example, in Kim et al. (2011) 183(8):1015, which evaluated its protective properties 35 in allergic airway diseases using an ovalbumin (OVA)-inhalation model in mice. [0008] U.S. Patent No. 5,874,468 discloses brain targeted low molecular weight, hydrophobic antioxidants and use of antioxidants in treatment of central nervous system neurodegenerative disorders such as Parkinson’s, Alzheimer’s and Creutzfeldt-Jakob’s diseases and in treatment of conditions of peripheral tissues, such as acute respiratory distress syndrome, amyotrophic lateral sclerosis, atherosclerotic cardiovascular disease and multiple organ dysfunction, in which 40 oxidants are overproduced. [0009] U.S. Patent No. 6,369,106 discloses a method of reducing oxidative stress in the brain of an organism having a blood brain barrier and suffering an ischemic brain injury, the method comprising the step of administering a compound to the organism, the compound having (a) a combination of molecular weight and membrane miscibility properties for permitting the compound to cross the blood brain barrier of the organism; (b) a readily oxidizable chemical group for 45 exerting antioxidation properties; and (c) a chemical make-up for permitting the compound or its intracellular derivative to accumulate within the cytoplasm of cells. [0010] International Patent Application Publication No. WO 2002/034202 discloses an antioxidant compound charac- terized by (a) a peptide including at least three amino acid residues of which at least two are cysteine residues, each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds, each being 50 cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or non-charged moiety being attached to an amino terminal of the peptide via a first bond and a second hydrophobic or non-charged moiety being attached to a carboxy terminal of the peptide via a second bond, the first hydrophobic or non-charged moiety and the second hydro- phobic or non-charged moiety are selected so as to provide the antioxidant compound with membrane miscibility prop- erties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of the at least two peptide 55 bonds by the at least one intracellular peptidase results in generation of a plurality of antioxidant species, each including one of the cysteine residues having the readily oxidizable sulfhydryl group and which is also active in effecting antioxi- dation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation. [0011] Metal chelation is another important aspect in protecting biological systems from harmful substances. Metals, 2 EP 3 121 189 A1 particularly heavy metals, are known to exert toxic effects when present in inappropriate amounts. Metal ions may generate free radicals reactions, thereby contributing to oxidative stress. [0012] Ionizing radiation such as ultraviolet (UV) light, X rays, gamma rays, neutron beam and proton beam among others, may induce oxidative stress, inflammation, bone marrow damage (resulting in leukopenia, thrombocytopenia 5 and anemia), digestive system damage (including loss of microvilli in the intestine walls) and abundant mutagenic and cytotoxic DNA lesions, which are responsible for the development of benign tumors, cancer (including hematological malignancies) and many other harmful conditions and disorders. Ionizing radiation promotes the production of free radicals, therefore antioxidants may protect against ionizing radiation-induced damage. It has been shown that antioxidant thiols (N-acetylcysteine amide, glutathione and thioproline) are capable of protecting against radiation-induced damage 10 to cellular DNA in human blood lymphocytes (Tiwari et al. Mutat Res. 2009, 31;676(1-2):62-8). The various sources of natural ionizing radiation include cosmic radiation, solar radiation (including UV and protons) and high radon gas envi- ronments. The various sources of artificial ionizing radiation include external and internal radiation during medical pro- cedures such as diagnostic imaging and scanning, injected or swallowed radioactive isotopes, nuclear medicine and radiation therapy, among others. There is an unmet need for improved compositions directed to the prevention and 15 treatment of damages caused by ionizing radiation, suitable for oral, topical and systemic administration. [0013] Additionally, there still remains a need for more effective means to handle conditions associated with excess amounts or excessive concentrations of damaging substances in cells. For example, it would be highly beneficial to have antioxidant, anti-inflammatory, anti-allergy and metal chelating compounds, with a combination of high potency, good stability, bioavailability and sufficient half life to achieve the desired effects. 20 SUMMARY OF THE INVENTION [0014] The present
Recommended publications
  • Amidotrizoic Acid/Barium Sulfate 1477 Imbalance Should Be Corrected Before Contrast Media Are Given
    Amidotrizoic Acid/Barium Sulfate 1477 imbalance should be corrected before contrast media are given. management of adhesive small bowel obstruction;2 they allow pyloric stenosis or lesions that may predispose to obstruction. Particular care is needed in patients with multiple myeloma since identification of patients who require surgery and, although they Adequate hydration should be ensured after the procedure to pre- dehydration resulting from use of contrast media may cause pre- have not been shown to relieve obstruction, they may reduce vent severe constipation. cipitation of protein in the renal tubules, leading to anuria and length of hospital stay in patients treated without surgery. It is contra-indicated in patients with gastrointestinal perforation, fatal renal failure. 1. Murshed R, et al. Meconium ileus: a ten-year review of thirty-six and should be avoided, particularly when given rectally, in those Caution is also necessary in patients with severe hypertension, patients. Eur J Pediatr Surg 1997; 7: 275–7. at risk of perforation, such as patients with acute ulcerative colitis advanced cardiac disease, phaeochromocytoma, sickle-cell dis- 2. Abbas S, et al. Oral water soluble contrast for the management or diverticulitis and after rectal or colonic biopsy, sigmoidosco- of adhesive small bowel obstruction. Available in The Cochrane ease, or hyperthyroidism or epilepsy, and in debilitated, severely Database of Systematic Reviews; Issue 3. Chichester: John Wi- py, or radiotherapy. ill, very old, or very young patients. ley; 2007 (accessed 14/07/08). Uses and Administration Amidotrizoates and other hypertonic contrast media are neuro- Preparations Barium sulfate is used as a radiographic contrast medium toxic and should not be given intrathecally; patients with sub- (p.1474) for X-ray examination of the gastrointestinal tract in- arachnoid haemorrhage may be at risk with any intravascular BP 2008: Meglumine Amidotrizoate Injection; Sodium Amidotrizoate In- jection; volving single- or double-contrast techniques or computed tom- use.
    [Show full text]
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • The Study Programme for the Quality Management of Essential Medicines - Good Manufacturing Practical (GMP) and Inspection
    The Study Programme for the Quality Management of Essential Medicines - Good Manufacturing Practical (GMP) and Inspection - Country Reports Japan International Corporation of Welfare Services (JICWELS) Contents 1. Cambodia 1 2. Indonesia 70 3. Malaysia 91 4. Philippines 116 5. Sri Lanka 141 6. Thailand 161 The Study Programme for the Quality Management of Essential Medicines - Good Manufacturing Practical (GMP) and Inspection - Cambodia -1- KINGDOM OF CAMBODIA Nation Religion King Ministry of Health Department of Drugs and Food Country Report The Study Program on Quality Management of Essential Medicines Good Manufacturing Practice (GMP) and Inspection November 4, 2012 – November 30, 2012 Sponsored by : The Government of Japan Japan International Cooperation Agency (JICA) Department of Drugs and Food Ministry of Health, Cambodia. -2- I- COUNTRY PROFILE -3- A-Geography Cambodia is an agricultural country located in South East Asia which bordering the Gulf of Thailand, between Thailand, Vietnam, and Laos. Its approximate geographical coordinates are 13°N 105°E. Its 2,572 km border is split among Vietnam (1,228 km), Thailand (803 km) and Laos (541 km), as well as 443 km of coastline. Cambodia covers 181,035 square kilometers in the southwestern part of the Indochina, Cambodia lies completely within the tropics; its southernmost points are only slightly more than 10° above the equator. The country is bounded on the north by Thailand and by Laos, on the east and southeast by Vietnam, and on the west by the Gulf of Thailand and by Thailand. It consists of the Tonle Sap Basin and the Mekong Lowlands. To the southeast of this great basin is the Mekong Delta, which extends through Vietnam to the South China Sea.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • ACR Manual on Contrast Media
    ACR Manual On Contrast Media 2021 ACR Committee on Drugs and Contrast Media Preface 2 ACR Manual on Contrast Media 2021 ACR Committee on Drugs and Contrast Media © Copyright 2021 American College of Radiology ISBN: 978-1-55903-012-0 TABLE OF CONTENTS Topic Page 1. Preface 1 2. Version History 2 3. Introduction 4 4. Patient Selection and Preparation Strategies Before Contrast 5 Medium Administration 5. Fasting Prior to Intravascular Contrast Media Administration 14 6. Safe Injection of Contrast Media 15 7. Extravasation of Contrast Media 18 8. Allergic-Like And Physiologic Reactions to Intravascular 22 Iodinated Contrast Media 9. Contrast Media Warming 29 10. Contrast-Associated Acute Kidney Injury and Contrast 33 Induced Acute Kidney Injury in Adults 11. Metformin 45 12. Contrast Media in Children 48 13. Gastrointestinal (GI) Contrast Media in Adults: Indications and 57 Guidelines 14. ACR–ASNR Position Statement On the Use of Gadolinium 78 Contrast Agents 15. Adverse Reactions To Gadolinium-Based Contrast Media 79 16. Nephrogenic Systemic Fibrosis (NSF) 83 17. Ultrasound Contrast Media 92 18. Treatment of Contrast Reactions 95 19. Administration of Contrast Media to Pregnant or Potentially 97 Pregnant Patients 20. Administration of Contrast Media to Women Who are Breast- 101 Feeding Table 1 – Categories Of Acute Reactions 103 Table 2 – Treatment Of Acute Reactions To Contrast Media In 105 Children Table 3 – Management Of Acute Reactions To Contrast Media In 114 Adults Table 4 – Equipment For Contrast Reaction Kits In Radiology 122 Appendix A – Contrast Media Specifications 124 PREFACE This edition of the ACR Manual on Contrast Media replaces all earlier editions.
    [Show full text]
  • ACR Manual on Contrast Media – Version 9, 2013 Table of Contents / I
    ACR Manual on Contrast Media Version 9 2013 ACR Committee on Drugs and Contrast Media ACR Manual on Contrast Media – Version 9, 2013 Table of Contents / i ACR Manual on Contrast Media Version 9 2013 ACR Committee on Drugs and Contrast Media © Copyright 2013 American College of Radiology ISBN: 978-1-55903-012-0 Table of Contents Topic Last Updated Page 1. Preface. V9 – 2013 . 3 2. Introduction . V7 – 2010 . 4 3. Patient Selection And Preparation Strategies . V7 – 2010 . 5 4. Injection of Contrast Media . V7 – 2010 . 13 5. Extravasation Of Contrast Media . V7 – 2010 . 17 6. Allergic-Like And Physiologic Reactions To Intravascular Iodinated Contrast Media . V9 – 2013 . 21 7. Contrast Media Warming . V8 – 2012 . 29 8. Contrast-Induced Nephrotoxicity . V8 – 2012 . 33 9. Metformin . V7 – 2010 . 43 10. Contrast Media In Children . V7 – 2010 . 47 11. Gastrointestinal (GI) Contrast Media In Adults: Indications And Guidelines V9 – 2013 . 55 12. Adverse Reactions To Gadolinium-Based Contrast Media . V7 – 2010 . 77 13. Nephrogenic Systemic Fibrosis . V8 – 2012 . 81 14. Treatment Of Contrast Reactions . V9 – 2013 . 91 15. Administration Of Contrast Media To Pregnant Or Potentially Pregnant Patients . V9 – 2013 . 93 16. Administration Of Contrast Media To Women Who Are Breast-Feeding . V9 – 2013 . 97 Table 1 – Indications for Use of Iodinated Contrast Media . V9 – 2013 . 99 Table 2 – Organ and System-Specific Adverse Effects from the Administration of Iodine-Based or Gadolinium-Based Contrast Agents. V9 – 2013 . 100 Table 3 – Categories of Acute Reactions . V9 – 2013 . 101 Table 4 – Treatment of Acute Reactions to Contrast Media in Children . V9 – 2013 .
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Not for Distribution
    MRI for Technologists Contrast Agent Safety MRI for Technologists is a training program designed to meet the needs of radiologic technologists entering and/or working in the field Release Date of magnetic resonance imaging (MRI). These June 2012 units are designed to augment classroom instruction and on-site training for radiologic Expiration Date technology students and professionals planning June 1, 2020 to take the review board examinations, as well as to provide a review for those looking to refresh their knowledge base in MR imaging. This material will be reviewed for continued accuracy and relevance. Please go to www.icpme.us for up-to-date information regarding current expiration dates. OVERVIEW The skill of the technologist is the single most important factor in obtaining good quality diagnostic images. A successful MRI examination is the culmination of many factors under the direct control of the technologist. MRI for Technologists: MRI Contrast Safety introduces the learner to the different types of MRI contrast media, visualization of normal anatomy and pathology, exam-specific agents, and how to recognize and respond to the most common adverse patient reactions. After completing this educational material, the reader will be able to: • Define the different types of MRI contrast media NOT FOR DISTRIBUTION • Determine specific contrast media appropriate for different types of MRI examinations • Recognize and respond to the most common adverse patient reactions to MRI contrast media administration EDUCATIONAL CREDIT This program has been approved by the American Society of Radiologic Technologists (ASRT) for 1.0 hour ARRT Category A continuing education credit. Note: Terms in bold throughout this material can be found in the glossary.
    [Show full text]
  • Nomenclature and Writing Formulas
    NOMENCLATURE AND WRITING FORMULAS PART I--FORMULAS AND NOMENCLATURE OF IONIC COMPOUND Composed of Cations and Anions. Types of Cations (positive ions): A. Metals lose electrons to form positive ions. These ions are called monoatomic because they are made up of only ONE ion. They can be of two types: Constant charge or Variable charge. Constant charge: Group IA, IIA, IIIA A few transition metals Ag+, Zn2+ and Cd2+ The names of these ions are the same as the name of the atom Examples: Na+ = sodium ion Zn2+ = zinc ion Variable charge: Most transition metals (except for silver, zinc and cadmium) A few representative metals: Sn, Bi, and Pb Fe2+ Iron (II) Fe3 + Iron (III) Cu+ Copper (I) Cu2+ Copper (II) Sn4+ Tin(IV) Sn2+ Tin(II) B. A polyatomic ion-- Consists of more than one atom. The most common positive + one is ammonium, NH4 Types of Anions (negative ions): A. Non metals gain electrons to form negative ions. These ions are called monoatomic because they are made up of only ONE ion. The names of these ions end in -ide. Examples: S2- sulfide Cl1- chloride N3- nitride O2- oxide B. A polyatomic ion-- Consists of more than one atom. The names of polyatomic anions often end in -ate or -ite 1 - 1- Examples: NO3 nitrate NO2 nitrite 2- 2- SO4 sulfate SO3 sulfite Two important polyatomic ions end in -ide OH1 - hydroxide CN1- cyanide A compound is usually IONIC if it: Contains a cation and an anion--often a metal and a nonmetal Hint: Formula begins with a metal or NH4+ Ionic - To write the formula 1.
    [Show full text]
  • Dual Energy and Low Kv Techniques: Impact on Oral Contrast Density at Helical CT
    Dual Energy and Low kV Techniques: Impact On Oral Contrast Density At Helical CT Douglas Sheafor, Andrew Hardie, Mark Kovacs, Melissa Picard, Philip Burchett, Mark Adams Medical University of South Carolina Charleston, South Carolina DISCLOSURES NONE Background • Positive oral contrast, both barium and iodine based, has been formulated for optimal opacification (200HU) of the gastrointestinal tract when imaged using traditional 120 kV single energy techniques. • These oral contrast concentrations may not be optimized for newer low kV and dual energy CT acquisitions which increase relative densities of contrast media. Purpose The purpose of this study was to assess the quantitative and qualitative effects of kV on oral contrast density using single and Dual Energy CT techniques. Methods Phantom Study A commercially available CIRS tissue equivalent phantom was utilized to image oral contrast materials using kV settings ranging from 80-140 kV single-energy and 90 and 150 kV dual-energy CT techniques on a second generation dual source CT scanner. Both non-dilute barium sulfate suspension (Readi-CAT2, Bracco, Princeton, NJ) and a range of iodine-based oral contrast dilutions (Iohexol, GE Healthcare, Chicago, IL) were assessed. Methods Retrospective Study Additionally, a retrospective analysis of 32 consecutive oral contrast enhanced CT scans in 21 patients was performed. Scans were performed on a variety of single and dual energy CT scanners employing a range of kV settings from 90-150. Both oral contrast density and reader-determined optimal bowel window and level (W/L) settings were retrospectively, independently assessed by 3 fellowship trained abdominal imagers . Results Phantom Study • Barium sulfate and iohexol solutions corresponding to those used in clinical practice showed a range of CT densities for relevant kV settings of between 207 and 598 HU.
    [Show full text]