The Newton-Leibniz Controversy Over the Invention of the Calculus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foundations of Newtonian Dynamics: an Axiomatic Approach For
Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that -
Spinoza and the Sciences Boston Studies in the Philosophy of Science
SPINOZA AND THE SCIENCES BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE EDITED BY ROBERT S. COHEN AND MARX W. WARTOFSKY VOLUME 91 SPINOZA AND THE SCIENCES Edited by MARJORIE GRENE University of California at Davis and DEBRA NAILS University of the Witwatersrand D. REIDEL PUBLISHING COMPANY A MEMBER OF THE KLUWER ~~~.'~*"~ ACADEMIC PUBLISHERS GROUP i\"lI'4 DORDRECHT/BOSTON/LANCASTER/TOKYO Library of Congress Cataloging-in-Publication Data Main entry under title: Spinoza and the sciences. (Boston studies in the philosophy of science; v. 91) Bibliography: p. Includes index. 1. Spinoza, Benedictus de, 1632-1677. 2. Science- Philosophy-History. 3. Scientists-Netherlands- Biography. I. Grene, Marjorie Glicksman, 1910- II. Nails, Debra, 1950- Ill. Series. Q174.B67 vol. 91 OOI'.Ols 85-28183 101 43.S725J 100 I J ISBN-13: 978-94-010-8511-3 e-ISBN-13: 978-94-009-4514-2 DOl: 10.1007/978-94-009-4514-2 Published by D. Reidel Publishing Company, P.O. Box 17, 3300 AA Dordrecht, Holland. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, Holland. 2-0490-150 ts All Rights Reserved © 1986 by D. Reidel Publishing Company Softcover reprint of the hardcover 1st edition 1986 and copyright holders as specified on appropriate pages within No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner FROM SPINOZA'S LETTER TO OLDENBURG, RIJNSBURG, APRIL, 1662 (Photo by permission of Berend Kolk) TABLE OF CONTENTS ACKNOWLEDGEMENTS ix MARJORIE GRENE I Introduction xi 1. -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Berkeley's Case Against Realism About Dynamics
Lisa Downing [Published in Berkeley’s Metaphysics, ed. Muehlmann, Penn State Press 1995, 197-214. Turbayne Essay Prize winner, 1992.] Berkeley's case against realism about dynamics While De Motu, Berkeley's treatise on the philosophical foundations of mechanics, has frequently been cited for the surprisingly modern ring of certain of its passages, it has not often been taken as seriously as Berkeley hoped it would be. Even A.A. Luce, in his editor's introduction to De Motu, describes it as a modest work, of limited scope. Luce writes: The De Motu is written in good, correct Latin, but in construction and balance the workmanship falls below Berkeley's usual standards. The title is ambitious for so brief a tract, and may lead the reader to expect a more sustained argument than he will find. A more modest title, say Motion without Matter, would fitly describe its scope and content. Regarded as a treatise on motion in general, it is a slight and disappointing work; but viewed from a narrower angle, it is of absorbing interest and high importance. It is the application of immaterialism to contemporary problems of motion, and should be read as such. ...apart from the Principles the De Motu would be nonsense.1 1The Works of George Berkeley, Bishop of Cloyne, ed. A.A. Luce and T.E. Jessop (London: Thomas Nelson and Sons, 1948-57), 4: 3-4. In this paper, all references to Berkeley are to the Luce-Jessop edition. Quotations from De Motu are taken from Luce's translation. I use the following abbreviations for Berkeley’s works: PC Philosophical Commentaries PHK-I Introduction to The Principles of Human Knowledge PHK The Principles of Human Knowledge DM De Motu A Alciphron TVV The Theory of Vision Vindicated and Explained S Siris 1 There are good general reasons to think, however, that Berkeley's aims in writing the book were as ambitious as the title he chose. -
NEWTON's FIRST LAW of MOTION the Law of INERTIA
NEWTON’S FIRST LAW OF MOTION The law of INERTIA INERTIA - describes how much an object tries to resist a change in motion (resist a force) inertia increases with mass INERTIA EXAMPLES Ex- takes more force to stop a bowling ball than a basket ball going the same speed (bowling ball tries more to keep going at a constant speed- resists stopping) Ex- it takes more force to lift a full backpack than an empty one (full backpack tries to stay still more- resists moving ; it has more inertia) What the law of inertia says…. AKA Newton’s First Law of Motion An object at rest, stays at rest Because the net force is zero! Forces are balanced (equal & opposite) …an object in motion, stays in motion Motion means going at a constant speed & in a straight line The net force is zero on this object too! NO ACCELERATION! …unless acted upon by a net force. Only when this happens will you get acceleration! (speed or direction changes) Forces are unbalanced now- not all equal and opposite there is a net force> 0N! You have overcome the object’s inertia! How does a traveling object move once all the forces on it are balanced? at a constant speed in a straight line Why don’t things just move at a constant speed in a straight line forever then on Earth? FRICTION! Opposes the motion & slows things down or GRAVITY if motion is in up/down direction These make the forces unbalanced on the object & cause acceleration We can’t get away from those forces on Earth! (we can encounter some situations where they are negligible though!) HOW can you make a Bowling -
Newton's First Law of Motion
Mechanics 2.1. Newton’s first law of motion mc-web-mech2-1-2009 Sir Isaac Newton aimed to describe and predict the movement of every object in the Universe using his three laws of motion. Like many other ‘laws’ they give the right answers for the majority of the time. For example, the paths of planets, moons and satellites are all calculated using Newton’s laws. Newton’s first law of motion Newton’s first law of motion states that a body will stay at rest or move with constant velocity unless a resultant external force acts on it. Note: Moving in a straight line at a constant speed, in other words, moving at a constant velocity is commonly referred to as uniform motion. There are two consequences of this law: 1. If a body has an acceleration, then there must be a resultant force acting on it. 2. If a body has no acceleration, then the forces acting on it must be in equilibrium (have zero resultant force). At first glance this law would appear contrary to everyday experience: give an object a push to set it in motion - then, it will slow down and come to rest - it does not ‘continue in a state of uniform motion’. This is due to unseen resistive forces of friction and air resistance opposing the motion. (Figure 1). Figure 1: Resistive forces acting together to oppose motion Bodies resist changes to their motion. In mechanics, inertia is the resistance of a body to a change in its velocity. It is the property discussed in Newton’s first law, sometimes known as the principle of inertia. -
KAREN THOMSON CATALOGUE 103 UNIQUE OR RARE with A
KAREN THOMSON CATALOGUE 103 UNIQUE OR RARE with a Newtonian section & a Jane Austen discovery KAREN THOMSON RARE BOOKS CATALOGUE 103 UNIQUE OR RARE With a Newtonian section (1-8), and a Jane Austen discovery (16) [email protected] NEWTONIANA William Jones’ copy [1] Thomas Rudd Practicall Geometry, in two parts: the first, shewing how to perform the foure species of Arithmeticke (viz: addition, substraction, multiplication, and division) together with reduction, and the rule of proportion in figures. The second, containing a hundred geometricall questions, with their solutions & demonstrations, some of them being performed arithmetically, and others geometrically, yet all without the help of algebra. Imprinted at London by J.G. for Robert Boydell, and are to be sold at his Shop in the Bulwarke neer the Tower, 1650 £1500 Small 4to. pp. [vii]+56+[iv]+139. Removed from a volume of tracts bound in the eighteenth century for the Macclesfield Library with characteristically cropped inscription, running titles, catchwords and page numbers, and shaving three words of the text on H4r. Ink smudge to second title page verso, manuscript algebraic solution on 2Q3 illustrated below, Macclesfield armorial blindstamp, clean and crisp. First edition, one of two issues published in the same year (the other spelling “Practical” in the title). William Jones (1675-1749) was employed by the second Earl of Macclesfield at Shirburn Castle as his mathematics instructor, and at his death left his pupil and patron the most valuable mathematical library in England, which included Newton manuscript material. Jones was an important promoter of Isaac Newton’s work, as well as being a friend: William Stukeley (see item 6), in the first biography of Newton, describes visiting him “sometime with Dr. -
Cotton Mather's Relationship to Science
Georgia State University ScholarWorks @ Georgia State University English Theses Department of English 4-16-2008 Cotton Mather's Relationship to Science James Daniel Hudson Follow this and additional works at: https://scholarworks.gsu.edu/english_theses Part of the English Language and Literature Commons Recommended Citation Hudson, James Daniel, "Cotton Mather's Relationship to Science." Thesis, Georgia State University, 2008. https://scholarworks.gsu.edu/english_theses/33 This Thesis is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. COTTON MATHER’S RELATIONSHIP TO SCIENCE by JAMES DANIEL HUDSON Under the Direction of Dr. Reiner Smolinski ABSTRACT The subject of this project is Cotton Mather’s relationship to science. As a minister, Mather’s desire to harmonize science with religion is an excellent medium for understanding the effects of the early Enlightenment upon traditional views of Scripture. Through “Biblia Americana” and The Christian Philosopher, I evaluate Mather’s effort to relate Newtonian science to the six creative days as recorded in Genesis 1. Chapter One evaluates Mather’s support for the scientific theories of Isaac Newton and his reception to natural philosophers who advocate Newton’s theories. Chapter Two highlights Mather’s treatment of the dominant cosmogonies preceding Isaac Newton. The Conclusion returns the reader to Mather’s principal occupation as a minister and the limits of science as informed by his theological mind. Through an exploration of Cotton Mather’s views on science, a more comprehensive understanding of this significant early American and the ideological assumptions shaping his place in American history is realized. -
Newton and Kant on Absolute Space: from Theology to Transcendental Philosophy
Newton and Kant on Absolute Space: From Theology to Transcendental Philosophy Michael Friedman Abstract I argue that Einstein’s creation of both special and general relativity instantiates Reichenbach’s conception of the relativized a priori. I do this by show- ing how the original Kantian conception actually contributes to the development of Einstein’s theories through the intervening philosophical and scientific work of Helmholtz, Mach, and Poincaré. In my previous work on Newton and Kant I have primarily emphasized methodo- logical issues: why Kant takes the Newtonian Laws of Motion (as well as certain related propositions of what he calls “pure natural science”) as synthetic a priori constitutive principles rather than mere empirical laws, and how this point is inti- mately connected, in turn, with Kant’s conception of absolute space as a regulative idea of reason – as the limit point of an empirical constructive procedure rather than a self-subsistent “container” existing prior to and independently of all perceptible matter. I have also argued that these methodological differences explain the circum- stance that Kant, unlike Newton, asserts that gravitational attraction must be con- ceived as an “action at a distance through empty space,” and even formulates a (rare) criticism of Newton for attempting to leave the question of the “true cause” of gravitational attraction entirely open. In this paper I emphasize the importance of metaphysical and theological issues – about God, his creation of the material world in space, and the consequences different views of such creation have for the metaphysical foundations of physics. I argue, in particular, that Kant’s differences with Newton over these issues constitute an essential part of his radical transforma- tion of the very meaning of metaphysics as practiced by his predecessors. -
Determinism Is False
%&5&3.*/*4. Barry Loewer %FUFSNJOJTNJTBDPOUJOHFOUNFUBQIZTJDBMDMBJNBCPVUUIFGVOEBNFOUBMOBUVSBMMBXT UIBUIPMEJOUIFVOJWFSTF*UTBZT The natural laws and the way things are at time t determine the way things will be at later times. 5IF NBUIFNBUJDJBO 1JFSSF4JNPO -BQMBDF FYQSFTTFE IJT CFMJFG UIBU EFUFS- minism is true this way: 8F PVHIU UP SFHBSE UIF QSFTFOU TUBUF PG UIF VOJWFSTF BT UIF FGGFDU PG JUT antecedent state and as the cause of the state that is to follow. An intel- MJHFODF LOPXJOH BMM UIF GPSDFT BDUJOH JO OBUVSF BU B HJWFO JOTUBOU BT XFMM as the momentary positions of all things in the universe, would be able to comprehend in one single formula the motions of the largest bodies as well as the lightest atoms in the world, provided that its intellect were suf!ciently QPXFSGVMUPTVCKFDUBMMEBUBUPBOBMZTJTUPJUOPUIJOHXPVMECFVODFSUBJO UIF future as well as the past would be present to its eyes. The perfection that the human mind has been able to give to astronomy affords but a feeble outline of such intelligence. 5IF QIZTJDT PG -BQMBDFT EBZ UIF àSTU EFDBEFT PG UIF OJOFUFFOUI DFOUVSZ XBT /FXUPOJBO DMBTTJDBM NFDIBOJDT*TBBD/FXUPOGPSNVMBUFEQSJODJQMFTUIBUIFUIPVHIU FYQSFTTUIFMBXTEFTDSJCJOHIPXGPSDFTEFUFSNJOFUIFNPUJPOTPGCPEJFT F ma) and IPXUIFQPTJUJPOTPGCPEJFTBOEPUIFSGBDUPSTEFUFSNJOFHSBWJUBUJPOBMBOEPUIFSLJOET PGGPSDFT6TJOHUIFTFQSJODJQMFT /FXUPOBOEQIZTJDJTUTGPMMPXJOHIJNXFSFBCMFUP QSFEJDUBOEFYQMBJOUIFNPUJPOTPGDFMFTUJBMBOEUFSSFTUSJBMCPEJFT'PSFYBNQMF UIFTF laws account for the orbits of the planets, the trajectories of cannon balls, and the QFSJPET PG QFOEVMVNT-JLF/FXUPO -BQMBDFEJE OPULOPX BMM UIFGPSDFTUIFSF BSF but he envisioned that, once those forces (and the corresponding force laws) were LOPXO /FXUPOJBO QIZTJDT XPVME CF B complete physical theory. That is, its laws would account for the motions of all material particles. And since he thought that FWFSZUIJOH UIBU FYJTUT JO TQBDF JT DPNQPTFE PG WBSJPVT LJOET PG WFSZ TNBMM NBUFSJBM #"33:-0&8&3 QBSUJDMFT PSBUPNT IFUIPVHIUUIBU/FXUPOJBONFDIBOJDT PODFBMMUIFGPSDFTXFSF LOPXO XPVMECFXIBUUPEBZXFXPVMEDBMMthe theory of everything. -
Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy.