Newton As Philosopher
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vision, Color Innateness and Method in Newton's Opticks
CORE Metadata, citation and similar papers at core.ac.uk Provided by Archive Ouverte en Sciences de l'Information et de la Communication Vision, Color Innateness and Method in Newton’s Opticks Philippe Hamou To cite this version: Philippe Hamou. Vision, Color Innateness and Method in Newton’s Opticks. Biener, Zvi and Schliesser, Eric. Newton and Empiricism, Oxford University Press, 2014, 978-0-19-933709-5. hal- 01551257 HAL Id: hal-01551257 https://hal-univ-paris10.archives-ouvertes.fr/hal-01551257 Submitted on 21 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Feb 10 2014, NEWGEN 3 Vision, Color Innateness, and Method in Newton’s Opticks Philippe Hamou1 Inthis essay I argue for the centrality of Newton’s theory of vision to his account of light and color.Relying on psycho-physical experiments, anatomical observations, and physical hypotheses, Newton, quite early in his career, elaborated an original, although largely hypothetical,theory of vision, to which he remained faithful through- out his life. The main assumptions of this theory, I urge,play an important (although almost entirely tacit) role in the demonstration of one of the most famous theses of the Opticks: the thesis thatspectral colors are “innately” present in white solar light. -
ABSTRACT CAUSAL PROGRAMMING Joshua Brulé
ABSTRACT Title of dissertation: CAUSAL PROGRAMMING Joshua Brul´e Doctor of Philosophy, 2019 Dissertation directed by: Professor James A. Reggia Department of Computer Science Causality is central to scientific inquiry. There is broad agreement on the meaning of causal statements, such as \Smoking causes cancer", or, \Applying pesticides affects crop yields". However, formalizing the intuition underlying such statements and conducting rigorous inference is difficult in practice. Accordingly, the overall goal of this dissertation is to reduce the difficulty of, and ambiguity in, causal modeling and inference. In other words, the goal is to make it easy for researchers to state precise causal assumptions, understand what they represent, understand why they are necessary, and to yield precise causal conclusions with minimal difficulty. Using the framework of structural causal models, I introduce a causation coeffi- cient as an analogue of the correlation coefficient, analyze its properties, and create a taxonomy of correlation/causation relationships. Analyzing these relationships provides insight into why correlation and causation are often conflated in practice, as well as a principled argument as to why formal causal analysis is necessary. Next, I introduce a theory of causal programming that unifies a large number of previ- ously separate problems in causal modeling and inference. I describe the use and implementation of a causal programming language as an embedded, domain-specific language called `Whittemore'. Whittemore permits rigorously identifying and esti- mating interventional queries without requiring the user to understand the details of the underlying inference algorithms. Finally, I analyze the computational com- plexity in determining the equilibrium distribution of cyclic causal models. -
The Unity of Heidegger's Project
REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree fV\o Year Too£ Name of Author A-A COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOANS Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied. This thesis comes within category D. -
Cultural Gap: an International Physicist’S Experience
Bridging the Socio- Cultural Gap: An International Physicist’s Experience J. Pedro Ochoa Berkeley Lab APS March Meeting: Experiences and Issues of Young Physicist’s on the International Arena Dallas, TX – March 2011 1 Wednesday, July 20, 2011 Let’s start with an example… Some quick facts about the academic career of Isaac Newton, arguably the best physicist of all times: Born in Lincolnshire Educated at King’s School, Grantham Attended Trinity College in Cambridge His advisors were Isaac Barrow and Benjamin Pulleyn He was appointed the Lucasian Professor of Mathematics at Cambridge Mentored notable students such as Roger Cotes and William Whiston. Died in Kensington at age 67 2 Wednesday, July 20, 2011 Let’s start with an example… Some quick facts about the academic career of Isaac Newton, arguably the best physicist of all times: England Born in Lincolnshire Educated at King’s School, Grantham Attended Trinity College in Cambridge His advisors were Isaac Barrow and Benjamin Pulleyn He was appointed the Lucasian Professor of Mathematics at Cambridge Mentored notable students such as Roger Cotes and William Whiston. Died in Kensington at age 67 2 Wednesday, July 20, 2011 Let’s start with an example… Some quick facts about the academic career of Isaac Newton, arguably the best physicist of all times: England Born in Lincolnshire England Educated at King’s School, Grantham Attended Trinity College in Cambridge His advisors were Isaac Barrow and Benjamin Pulleyn He was appointed the Lucasian Professor of Mathematics -
Leibniz' Dynamical Metaphysicsand the Origins
LEIBNIZ’ DYNAMICAL METAPHYSICSAND THE ORIGINS OF THE VIS VIVA CONTROVERSY* by George Gale Jr. * I am grateful to Marjorie Grene, Neal Gilbert, Ronald Arbini and Rom Harr6 for their comments on earlier drafts of this essay. Systematics Vol. 11 No. 3 Although recent work has begun to clarify the later history and development of the vis viva controversy, the origins of the conflict arc still obscure.1 This is understandable, since it was Leibniz who fired the initial barrage of the battle; and, as always, it is extremely difficult to disentangle the various elements of the great physicist-philosopher’s thought. His conception includes facets of physics, mathematics and, of course, metaphysics. However, one feature is essential to any possible understanding of the genesis of the debate over vis viva: we must note, as did Leibniz, that the vis viva notion was to emerge as the first element of a new science, which differed significantly from that of Descartes and Newton, and which Leibniz called the science of dynamics. In what follows, I attempt to clarify the various strands which were woven into the vis viva concept, noting especially the conceptual framework which emerged and later evolved into the science of dynamics as we know it today. I shall argue, in general, that Leibniz’ science of dynamics developed as a consistent physical interpretation of certain of his metaphysical and mathematical beliefs. Thus the following analysis indicates that at least once in the history of science, an important development in physical conceptualization was intimately dependent upon developments in metaphysical conceptualization. 1. -
THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P. -
Spinoza and the Sciences Boston Studies in the Philosophy of Science
SPINOZA AND THE SCIENCES BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE EDITED BY ROBERT S. COHEN AND MARX W. WARTOFSKY VOLUME 91 SPINOZA AND THE SCIENCES Edited by MARJORIE GRENE University of California at Davis and DEBRA NAILS University of the Witwatersrand D. REIDEL PUBLISHING COMPANY A MEMBER OF THE KLUWER ~~~.'~*"~ ACADEMIC PUBLISHERS GROUP i\"lI'4 DORDRECHT/BOSTON/LANCASTER/TOKYO Library of Congress Cataloging-in-Publication Data Main entry under title: Spinoza and the sciences. (Boston studies in the philosophy of science; v. 91) Bibliography: p. Includes index. 1. Spinoza, Benedictus de, 1632-1677. 2. Science- Philosophy-History. 3. Scientists-Netherlands- Biography. I. Grene, Marjorie Glicksman, 1910- II. Nails, Debra, 1950- Ill. Series. Q174.B67 vol. 91 OOI'.Ols 85-28183 101 43.S725J 100 I J ISBN-13: 978-94-010-8511-3 e-ISBN-13: 978-94-009-4514-2 DOl: 10.1007/978-94-009-4514-2 Published by D. Reidel Publishing Company, P.O. Box 17, 3300 AA Dordrecht, Holland. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, Holland. 2-0490-150 ts All Rights Reserved © 1986 by D. Reidel Publishing Company Softcover reprint of the hardcover 1st edition 1986 and copyright holders as specified on appropriate pages within No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner FROM SPINOZA'S LETTER TO OLDENBURG, RIJNSBURG, APRIL, 1662 (Photo by permission of Berend Kolk) TABLE OF CONTENTS ACKNOWLEDGEMENTS ix MARJORIE GRENE I Introduction xi 1. -
A Conjecture of Thermo-Gravitation Based on Geometry, Classical
A conjecture of thermo-gravitation based on geometry, classical physics and classical thermodynamics The authors: Weicong Xu a, b, Li Zhao a, b, * a Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education of China, Tianjin 300350, China b School of mechanical engineering, Tianjin University, Tianjin 300350, China * Corresponding author. Tel: +86-022-27890051; Fax: +86-022-27404188; E-mail: [email protected] Abstract One of the goals that physicists have been pursuing is to get the same explanation from different angles for the same phenomenon, so as to realize the unity of basic physical laws. Geometry, classical mechanics and classical thermodynamics are three relatively old disciplines. Their research methods and perspectives for the same phenomenon are quite different. However, there must be some undetermined connections and symmetries among them. In previous studies, there is a lack of horizontal analogical research on the basic theories of different disciplines, but revealing the deep connections between them will help to deepen the understanding of the existing system and promote the common development of multiple disciplines. Using the method of analogy analysis, five basic axioms of geometry, four laws of classical mechanics and four laws of thermodynamics are compared and analyzed. The similarity and relevance of basic laws between different disciplines is proposed. Then, by comparing the axiom of circle in geometry and Newton’s law of universal gravitation, the conjecture of the law of thermo-gravitation is put forward. Keywords thermo-gravitation, analogy method, thermodynamics, geometry 1. Introduction With the development of science, the theories and methods of describing the same macro system are becoming more and more abundant. -
A Rhetorical Analysis of Sir Isaac Newton's Principia A
A RHETORICAL ANALYSIS OF SIR ISAAC NEWTON’S PRINCIPIA A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN THE GRADUATE SCHOOL OF THE TEXAS WOMAN’S UNIVERSITY DEPARTMENT OF ENGLISH, SPEECH, AND FOREIGN LANGUAGES COLLEGE OF ARTS AND SCIENCES BY GIRIBALA JOSHI, B.S., M.S. DENTON, TEXAS AUGUST 2018 Copyright © 2018 by Giribala Joshi DEDICATION Nature and Nature’s Laws lay hid in Night: God said, “Let Newton be!” and all was light. ~ Alexander Pope Dedicated to all the wonderful eighteenth-century Enlightenment thinkers and philosophers! ii ACKNOWLEDGMENTS I would like to acknowledge the continuous support and encouragement that I received from the Department of English, Speech and Foreign Languages. I especially want to thank my thesis committee member Dr. Ashley Bender, and my committee chair Dr. Brian Fehler, for their guidance and feedback while writing this thesis. iii ABSTRACT GIRIBALA JOSHI A RHETORICAL ANALYSIS OF SIR ISAAC NEWTON’S PRINCIPIA AUGUST 2018 In this thesis, I analyze Isaac Newton's Philosophiae Naturalis Principia Mathematica in the framework of Aristotle’s theories of rhetoric. Despite the long-held view that science only deals with brute facts and does not require rhetoric, we learn that science has its own special topics. This study highlights the rhetorical situation of the Principia and Newton’s rhetorical strategies, emphasizing the belief that scientific facts and theories are also rhetorical constructions. This analysis shows that the credibility of the author and the text, the emotional debates before and after the publication of the text, the construction of logical arguments, and the presentation style makes the book the epitome of scientific writing. -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
Leibniz's Ultimate Theory Soshichi Uchii Abstract
Leibniz’s Ultimate Theory Soshichi Uchii Abstract This is a short summary of my new interpretation of Leibniz’s philosophy, including metaphysics and dynamics. Monadology is the core of his philosophy, but according to my interpretation, this document must be read together with his works on dynamics and geometry Analysis Situs, among others. Monadology describes the reality, the world of monads. But in addition, it also contains a theory of information in terms of the state transition of monads, together with a sketch of how that information is transformed into the phenomena via coding. I will argue that Leibniz’s program has a surprisingly wide range, from classical physics to the theories of relativity (special and general) , and extending even to quantum mechanics. 1. How should we read Monadology? Among Leibniz’s papers he completed in his last years, the one that should be regarded as containing the core of his system of knowledge is Monadology (1714). It is a theory of metaphysics, but I take it that Leibniz thought that it is the foundation of dynamics, and he envisaged that dynamics should be combined with his new geometry, called Analysis Situs. There are two firm grounds for the preceding assertion. The first is that Leibniz sketched the relationship between his metaphysics and dynamics, in the two papers New System and Specimen Dynamicum (both published in 1695; English tr. in Ariew and Garber 1989). If we wish to figure out a reasonable interpretation of Monadology, this ground must be taken very seriously. The second ground is the amazing accomplishments shown in The Metaphysical Foundations of Mathematics (written around the same time as Monadology; English tr. -
The Newton-Leibniz Controversy Over the Invention of the Calculus
The Newton-Leibniz controversy over the invention of the calculus S.Subramanya Sastry 1 Introduction Perhaps one the most infamous controversies in the history of science is the one between Newton and Leibniz over the invention of the infinitesimal calculus. During the 17th century, debates between philosophers over priority issues were dime-a-dozen. Inspite of the fact that priority disputes between scientists were ¡ common, many contemporaries of Newton and Leibniz found the quarrel between these two shocking. Probably, what set this particular case apart from the rest was the stature of the men involved, the significance of the work that was in contention, the length of time through which the controversy extended, and the sheer intensity of the dispute. Newton and Leibniz were at war in the later parts of their lives over a number of issues. Though the dispute was sparked off by the issue of priority over the invention of the calculus, the matter was made worse by the fact that they did not see eye to eye on the matter of the natural philosophy of the world. Newton’s action-at-a-distance theory of gravitation was viewed as a reversion to the times of occultism by Leibniz and many other mechanical philosophers of this era. This intermingling of philosophical issues with the priority issues over the invention of the calculus worsened the nature of the dispute. One of the reasons why the dispute assumed such alarming proportions and why both Newton and Leibniz were anxious to be considered the inventors of the calculus was because of the prevailing 17th century conventions about priority and attitude towards plagiarism.