ECE 425 CLASS NOTES – 2000 SECTION II – OPTICAL TOOLS

Introduction Radiometry Sources of Radiant Energy Photometry Radiometric Transfer

120

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

Introduction

An imaging system consists of several subsystems

image light transmission display human scene acquisition vision source subsystem subsystem* subsystem subsystem

coder decoder optics neural network optics detector* electronics

retina* brain

• * points of signal transduction, optical <—> electronic From the light source to the image acquisition subsystem, we’re concerned with:

• how much energy gets through (radiometry)

121

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

• contrast and sharpness of the image (linear systems) Similarly from the display subsystem to the human vision subsystem

122

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

Radiometry

Radiometry involves the propagation of radiation in space and through optical apertures Need to use 3-D to describe

3-D spherical coordinate system (r,θ,φ)

n θ Q

r P φ

123

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

• 3-D vector with r

• angle to the surface normal θ (radians)

• azimuth angle φ (radians) Radiation propagates from a source into a conical

spherical cap A

r source

124

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

• Define a Ω (steradians)

2 Ω = Ar⁄ (steradians)

• Ω = 1 (unit solid angle) when the spherical area subtended by the cone = radius of the Example: calculate the solid angles corresponding to a hemisphere and a sphere

• flat surface sources radiate into a hemisphere

• point sources radiate into a sphere

• set up integration over solid angle

125

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

θ rsinθ dθ

r

P

• Assume the source P is an isotropic radiator • Element of solid angle

• circumference of element of solid angle (“belt”) around sphere is 2πr sinθ

• width of “belt” is rdθ 126

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

• therefore area of “belt” is 2πr sinθ ⋅ rdθ and solid angle subtended by “belt” is

2πr sinθ ⋅ rdθ dΩ = ------2 r = 2πθsin dθ

• Total solid angle θ Ωθ()= ∫2πθsin dθ 0 = 2π()1 – cosθ

• For θ = π/2 (hemisphere)

Ω = 2π steradians

• For θ = π (sphere)

Ω = 4π steradians

127

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

Projected Area

• Useful in many radiometric calculations for both sources and detectors

• Area of surface element dA as viewed from an angle θ

n

θ dAcosθ θ

dA

128

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

Radiant Energy Quantities and Units

• Radiometric (valid for general case)

quantitiy symbol definition common units abbreviation radiant Q joule J energy Φ

radiant ∂Q joule per cubic w w = J m-3 density ∂V meter

∂Q radiant flux Φ = watt W ∂t

M ∂Φ M = (exitance) ∂A radiant flux watt per -2 density E square meter W m ∂Φ (irradi- E = ∂A ance)

129

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)

ECE 425 CLASS NOTES – 2000

quantitiy symbol definition common units abbreviation

radiant ∂Φ watt per I I = W sr-1 intensity ∂Ω steradian

2 ∂Φ watt per L = ∂Ω∂Acosθ radiance L steradian and W sr-1 m-2 ∂I = ∂Acosθ square meter

130

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

• Photometric (special to visual sensing)

quantity symbol common units abbreviation lumen-second (tal- luminous energy Q lm s bot) lumen-second per luminous density w -3 cubic meter lm s m luminous flux Φ lumen lm M lumen per square (luminous meter exitance) (lux) -2 luminous flux den- lm m (lx) sity lm ft-2 (fc) E lumen per square foot (illuminance) (footcandle)

131

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

quantity symbol common units abbreviation luminous intensity lumen per steradian I lm sr-1 (cd) (candlepower) (candela) candela per square meter (nit) nt luminance L candela per square π foot per steradian fL (footlambert)

132

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

• Radiometric <—> photometric conversion

common quantity symbol definition units abbreviation

Φ ⁄ Φ -1 luminous KK = v e lumen lm W efficacy per watt luminous VVKK= ⁄ unitless — efficiency maximum

• Material properties

common quantity symbol definition abbreviation units ε ⁄ emissivity ε = MMblackbody unitless —

α αΦ⁄ Φ absorptance = a i unitless —

ρΦ⁄ Φ reflectance ρ = r i unitless —

τΦ⁄ Φ transmittance τ = t i unitless —

133

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Wavelength Notation

• Some quantities are differential with respect to λ, e.g. Lλ and Eλ

• Units of “per wavelength interval” • Must be integrated over λ to obtain total quantity within a given wavelength range

• Some quantities simply vary with λ, e.g. ρ(λ), V(λ) and τ(λ)

• Not integrated alone; used to weight another quantity

134

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Sources of Radiant Energy

Blackbody (BB)

• Perfect radiator and absorber

• Produces maximum M for any source at a given T

• Nonattainable, ideal source

• spectral radiant exitance M given by Planck’s Equation

2 2πhc M = ------(wavelength in meters) λBB 5 hc ⁄ ()λkT λ []e –1 (W-m-2-µm-1) C1 = ------⁄ ()λ - (wavelength in micrometers) 5 C2 T λ []e –1

where

135

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

T is the blackbody’s temperature in Kelvin (K), h = 6.6256 x 10-34 (W-s2) Planck’s Constant k = 1.38054 x 10-23 (W-s-K-1) Boltzmann’s Constant c = 2.997925 x 108 (m-s-1) velocity of light λ = wavelength of radiation 8 -2 µ 4 C1 = 3.74151 x 10 W-m - m , and 4 µ C2 = 1.43879 x 10 m-K.

• Departure of a given source from a BB is its emittance • Measures the efficiency of a radiator or absorber ε ⁄ ≤≤ε λ =0Mλ MλBB , λ 1

136

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Sun

• Solar Irradiance at Top-Of-Atmosphere

2500

5900K BB at earth-sun distance )

-1 2000 MODTRAN m µ - -2 1500

1000

irradiance (W-m 500

0 0.4 0.8 1.2 1.6 2 2.4 wavelength (µm)

• Modeled well by a blackbody @ 5900K Solar energy propagates through the atmosphere to Earth’s surface

• Atmospheric transmittance creates spectral “windows” through which energy reaches the earth

137

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

• Above 3µm wavelength, the Earth’s self-emitted radiation (BB at 300K) becomes significant

• Above 8µm, Earth’s self-emitted radiation dominates and solar radiation is insignifcant

wavelength radiation surface property name range source of interest Visible (V) 0.4 – 0.7µm solar reflectance Near InfraRed (NIR) 0.7 – 1.1µm solar reflectance 1.1 – 1.35µm Short Wave InfraRed 1.4 – 1.8µm solar reflectance (SWIR) 2 – 2.5µm Mid Wave 3 – 4µm reflectance, solar, thermal InfraRed (MWIR) 4.5 – 5µm temperature Thermal 8 – 9.5µm thermal temperature InfraRed (TIR) 10 – 14µm temperature (pas- thermal (passive) microwave, radar 1mm – 1m sive) artificial (active) roughness (active)

138

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Wien’s Law

• Specifies wavelength at which maximum BB radiation occurs

• Differentiate Planck’s equation, set to zero and solve for λ

λ = 2898 ⁄ T max

where λ is in µm and T is in K

λ • As T increases, |max decreases Stefan-Boltzmann’s Law

• Specifies total energy radiated by BB over all wavelengths

• Integrate Planck’s equation over all wavelengths

139

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

5 4 2π k 4 M = ------T tot 2 3 -2 15c h (W-m ) 4 = σT

where σ = Stefan-Boltzmann constant =

5.67 x 10-8 (W-m-2-K-4) Examples for Wein’s and Stefan-Boltzmann’s Laws:

λ µ -2 source T (K) |max ( m) Mtot (W-m )

earth 300 9.66 (TIR) 4.6 x 102 incandescent 2800 1.04 (NIR) 3.5 x 105 lamp 0.483 (blue- sun 6000 7 green) 7.3 x 10

140

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Photometry

Radiometry in the context of Human Vision System (HVS) Luminous flux Φ in lumens (lm)

• Corresponds to radiometric flux in Watts (W)

• Incorporates the HVS sensitivity to radiation Conversion of radiometric units to photometric units

• Multiply spectral quantity of interest by photopic visual sensitivity curve

• Integrate over λ

141

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Ex: Find the effective visual lm-m-2 emitted by the sun

• Photopic visual sensitivity: V(λ), 0 ≤ V(λ) ≤ 1, unitless

• Scaling factor is 683 lm-W-1 at λ = 555nm (peak of V(λ))

solar M relative visual M photopic visual sensitivity 1.2 108 1

1 108 0.8

8 107 photopic visualsensitivity ) -1

m 0.6 µ - -2 6 107

0.4 solar M (w-m 4 107

0.2 2 107

0 0 400 450 500 550 600 650 700 wavelength (nm)

142

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

• Spectral radiant exitance: MλΒΒ (T = 6000K, radiometric quantity)

• Total effective luminous exitance (photometric quantity)

V ()λ λ -2 Meff = ∫683V MλBBd (W-m )

–2 V × 9 • Using data in following table, Meff = 6.88 10 lm– m

Why isn’t this 1011?

Table for radiometric —> photometric conversion

-2 -1 -2 -1 λ (nm) Mλ (W•m •µm )V(λ)V(λ)•Mλ(W•m •µm ) 400 9.13e+07 4.00e-04 3.65e+04 410 9.34e+07 1.20e-03 1.12e+05 420 9.52e+07 4.00e-03 3.81e+05 430 9.67e+07 1.16e-02 1.12e+06 440 9.79e+07 2.30e-02 2.25e+06 450 9.88e+07 3.80e-02 3.75e+06 460 9.95e+07 6.00e-02 5.97e+06 470 9.99e+07 9.10e-02 9.09e+06 480 1.00e+08 1.39e-01 1.39e+07

143

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

490 1.00e+08 2.08e-01 2.08e+07 500 9.98e+07 3.23e-01 3.22e+07 510 9.93e+07 5.03e-01 4.99e+07 520 9.88e+07 7.10e-01 7.01e+07 530 9.80e+07 8.62e-01 8.45e+07 540 9.72e+07 9.54e-01 9.27e+07 550 9.62e+07 9.95e-01 9.57e+07 560 9.52e+07 9.95e-01 9.47e+07 570 9.40e+07 9.52e-01 8.95e+07 580 9.28e+07 8.70e-01 8.07e+07 590 9.14e+07 7.57e-01 6.92e+07 600 9.01e+07 6.31e-01 5.69e+07 610 8.87e+07 5.03e-01 4.46e+07 620 8.72e+07 3.81e-01 3.32e+07 630 8.57e+07 2.65e-01 2.27e+07 640 8.42e+07 1.75e-01 1.47e+07 650 8.27e+07 1.07e-01 8.85e+06 660 8.11e+07 6.10e-02 4.95e+06 670 7.95e+07 3.20e-02 2.54e+06 680 7.80e+07 1.70e-02 1.33e+06 690 7.64e+07 8.20e-03 6.26e+05 700 7.48e+07 4.10e-03 3.07e+05

144

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Radiometric Transfer

Radiance

• Fundamental quantity for extended sources

• Flux per source area per solid angle radiated

• Measured normal to the source dA dΩ 2 ∂φ L = ∂Ω∂A propagation

145

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

• Measured at an angle to the source • equivalent to a tilted source • use projected area θ

dΩ 2 ∂φ L = ∂Ω∂ θ propagation Acos dA

• NOTE: dΩ must be calculated for receiver surface normal to propagation direction (sometimes called projected solid angle) Inverse Square Law

• Point source emits radiation in all directions

146

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

• Radiant intensity I (W-sr–1)

• Receiver normal to propagation:

d I dA

• Solid angle subtended by receiver at source

dA dΩ = ------2 d

147

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

dA • Flux at receiver dΦ ==IdΩ I ------2 d

• Irradiance at receiver (W-m-2)

dΦ I dE ==------2 dA d

148

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Cos Law

• Tilt detector:

θ

I d dA

• Solid angle subtended by receiver at source

dAcosθ dΩ = ------2 d

• Irradiance at receiver (W-m-2)

dΦ I dE ==------cosθ 2 dA d

149

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Cos2 Law

• Move tilted detector to off-axis angle θ along receiver :

dA d/cosθ

θ I d

• Solid angle subtended by receiver at source

2 dA dA()cosθ dΩ = ------= ------2 2 []d ⁄ ()cosθ d

150

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

• Irradiance at receiver (W-m-2)

dΦ I 2 dE ==------()cosθ 2 dA d

151

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Cos3 Law

• “Un-tilt” detector so that it’s in the receiver plane:

dA d/cosθ

θ I d

• Solid angle subtended by receiver at source

3 dAcosθ dA()cosθ dΩ = ------= ------2 2 []d ⁄ ()cosθ d

152

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

• Irradiance at receiver (W-m-2)

dΦ I 3 dE ==------()cosθ 2 dA d

153

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Example: optical throughput between two surfaces

• Total flux through system is invariant to direction of propagation

• Case I: surfaces parallel to each other, and perpendicular to normal direction

Ω 21 Ω 12

A1 d A2

154

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

Φ L = ------AΩ LA A Φ ==LA Ω ------1 2 12 1 12 2 d LA A Φ ==LA Ω ------2 1 21 2 21 2 d

• Case II: source and receiver surfaces not parallel to each other, or perpendicular to normal direction

Ω 21 Ω 12

A1 θ θ 1 d 2 A2

155

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000

θ A2 cos 2 Φ ==LA cosθ Ω LA cosθ ------12 1 1 12 1 1 2 d θ A1 cos 1 Φ ==LA cosθ Ω LA cosθ ------21 2 2 21 2 2 2 d

156

DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax)